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Random flucutating fields and stochastic processes
  - OU process
  - RTN noise
 - 1/f noise

Quantum estimation theory for the spectral properties of a 
classical noise
   -Quantum Fisher information and SNR

Motivations
  -Classical vs Quantum Environments



Motivations

Open quantum systems are usually immersed in complex noisy 
environments

This interaction destroys coherence and quantumness

“What can we learn from the dynamics of an open quantum 
system about its complex environment?”



 

System+environment

● Unitary global evolution
● Trace out the B degrees of freedom
● CP map / Kraus operator representation 
● Master equation

Challenging or inappropriate (e.g. strong coupling..)
Many degrees of freedom
Interaction with a classical fluctuating field

Quantum system + quantum bath

Quantum system acted on by 
random fluctuating field

H=H S+HB+HSB

SB models with dephasing dynamics can always be written using 
classical models

Helm et al. PRA 2011
Crow & Joynt PRA 2014



 

Random classical fields

Semi-classical approach: 
quantum system + classical 
field 

Quantum system acted on by 
random fluctuating field

Stochastic modeling 

Solid state systems and nanodevices → Ornestein-Uhlenbeck process
                                                          RT noise
                                                          1/f noise



Dynamics under classical noise

To completely specify the model we 
need a probability functional

Global density matrix at time t for 
one realization of the process

Global unitary evolution

System density matrix 



Classical noise: Stochastic modeling 

C(t)=E [X(t1)X(t2)]autocorrelation 
                                  function

{X(t), t stochastic process

S()=∫C(s)e-is dsspectral density 

P[X(t)]probability functional

Xrandom variable

P(X)probability distribution

X(u)=E [eiuX]characteristic function



Classical noise: Gaussian vs non-Gaussian

Gaussian processes

Non-Gaussian processes{X(t), t 

Gaussian if n integer and  
subset {t1, .., tn}, the RVs X1,..,Xn are 
jointly normally distributed

[exp( i∑
j=1

n

u j X (t j))]=
exp [ i∑ j

n
u jμ j( t j)−

1
2
∑ j , k

u j uk K ( t j ,t k )]

K (t j ,t k )= [ X (t j)X (t k) ]− [ X (t j)] [ X (t k )]EE
Covariance kernel

No complete information 
from mean and covariance 
function.

Cannot be mimicked by any 
Gaussian model

Microscopic structure of the 
environment plays a key 
role

Bistable fluctuators

μ(t j)= [X (t j)]E
Mean 



Gaussian noise: Ornstein–Uhlenbeck process

Process which describes the stochastic behavior of 
the velocity of a massive Brownian particle under the 
influence of friction.



Non-Gaussian noise: Random telegraph noise

Bistable fluctuator: It can flip between two 
opposite values:
X(t)= ± a with switching rate       . 

Bergli, Galperin, Altshuler PRB 2006



Non-Gaussian noise: 1/f noise

Linear superposition of bistable fluctuators

Monte Carlo sampling...



1/f noise

PRL 97, 167001 (2006)



Non-Gaussian noise: 1/f noise - another microscopic model

Statistical mixture

Ensemble

The fluctuators have unknown 
switching rates, so they are  
described by a statistical 
mixture              

1/f noise can be ascribed to a 
single random bistable fluctuator 
or to a collection of them.

Stochasticity arise both from the 
process X(t) and the randomness 
in the switching rate.



Dynamics under classical noise

To completely specify the model we 
need a probability functional

Global density matrix at time t for 
one realization of the process

Global unitary evolution

System density matrix 



Gaussian vs non-Gaussian noise for exponential C(t)

OU process

RTN



Dynamics under classical noise: Gaussian vs non-Gaussian

OU processRTN



Dynamics under classical noise: 1/f α



ραα {x i}

Var [ α̂ ]≥
1

M F(α)
Cramér-Rao Bound

F [α]=∫dx p(x∣α)[∂α ln p( x∣α)]2
Fisher information

Quantum estimation theory

α̂=α̂ (x1, x2,.. , xM)
Not accessible



ρα α {x i}

Var [ α̂ ]≥
1

M G(α )
Precision of the optimal 
measurement

G(α)= ∑
n=1,2

(∂αρn)
2

ρn
+2∑

n≠m

(ρn−ρm)
2

ρn+ρm
∣〈φm∣∂αφn 〉∣

2Quantum Fisher 
information

Quantum estimation theory

α̂=α̂ (x1, x2,.. , xM)

Maximize the Fisher over the quantum 
measurements

F (α)≤G(α )

R(α)=α
2 G(α)Quantum signal-to-noise ratio



Maximize the extraction of information by optimizing:

the preparation of the probe

the interaction time 

the measurement at the output 

Our strategy



The physical system



Quantum Fisher Information - RTN



Bayesian estimator for the switching rate

Simulated experiment where we performed M  repeated optimal measurements on a qubit 
and used the collected outputs to built an estimator

p0=p [∣ + 〉 ]=1
2
(1+β( t , γ))

+ -

N

M-N

N out M we measure the state 



Bayes estimator for the switching rate II

Simulated repeated measurements on a qubit

γT=5
γT=200



Bayes estimator for the switching rate II

Simulated repeated measurements on a qubit

Bayes' theorem

γT=5
γT=200

γT=20

Var [ γ̂]≥
1

MG (γ)



OU process



ML estimator for the OU noise

Simulated repeated measurements on a qubit

CB, M. Paris, Phys. Lett. A 378, 2495 (2014)



 

QET – 1/f α  noise

N=1 N=10



 

QET - Results

N=1

N=10
N=50

N=1 N=10



 



 

Concluding remarks

Stochastic modeling is a convenient choice to describe the interaction of a 
quantum system with its environment

Quantum probes represent a resource to characterize classical environments 
(without collecting time series)
Using the tools of QET, we are able to maximize the information gained by 
optimizing the preparation of the probe, interaction time and measurement

Qualitative study, Need for more quntitative and comparisons
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