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Instrument - A Quantum Metrology View
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Y Phase Estimation in
presence of Decoherence

Start with fixed N: qubits, spins, photons

Dephasing or Phase Diffusion occurs
because of thermal or acoustic motion of
mirrors M1, M2 or noise intrinsic to laser
source. Coherence lost but not energy.

Dissipation or Loss occurs
because of imperfect detection,
scattering and absorption in
optical elements

Excitation/Relaxation occurs if
qubits coupled to bath at finite
temperature.

Dynamics of Andrea Smirne’s talk
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Noisy Quantum Dynamics —

d s 10 2
d—g = —ik[S%, ] — = =1 > Lisi)p

Individual noise (uncorrelated)

AR z
S* = E S;
)
Collective spin z operator produces
unitary shift

Lindblad form
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L(s)p = sTsp+ psts — 2spsT

S > 5+ excitation
S+ S  relaxation
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Collective Dephasing — e.g. Mirror Fluctuations
(equivalent to prior phase uncertainty in Bayesian approach:

2014 New J. Phys. 16 113002, Macieszczak, Fraas and Demkowicz-Dobrzahski)
dp do 1dr°
P = i8] — = ——[S7,[S7 V0
Lindblad Master equation - 0
v
(n|plm) = Ynthm exp{—=if(n — m)} exp{~T°(n — m)*/2}
Density Matrix element unitary shift dephasing

00 —(6—0)2/21° nQz
_ € 0)) = 6—205
P /OO () (1 (0)] B do. 1 (0)) 4(0))

Mixture of pure states, evolved by random phases. Gaussian-distributed
with mean @ and variance T'°

'Y increases linearly in time for Markovian dynamics Be]jkeley
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Influence of Collective Noise on Density Matrix of 100 Spins

Cosine Input State
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Numerics Reveal Bifurcations in Optimal State

N=40

Y n = Yty exp{—T%(n —m)?/2}
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increasing phase noise

N=120 Qubits or Photons
VmWn — Yy exp{—A(n — m)2/2} (dephasing)

Early numerics suggested cv approach

(for large N and/or large noise, the optimal state has smooth features)
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Quantum Fisher information for states in exponential form

Zhang Jiang
Center for Quantum Information and Control, University of New Mexico, MSCO07-4220, Albuquerque, New Mexico 87131-0001, USA
(Received 15 February 2014; published 31 March 2014)

We derive explicit expressions for the quantum Fisher information and the symmetric logarithmic derivative
(SLD) of a quantum state in the exponential form p = exp(G); the SLD is expressed in terms of the generator G.
Applications include quantum-metrology problems with Gaussian states and general thermal states. Specifically,
we give the SLD for a Gaussian state in two forms, in terms of its generator and its moments; the Fisher
information is also calculated for both forms. Special cases are discussed, including pure, degenerate, and very
noisy Gaussian states.

Arbitrary dynamics, for parameter (& by Zhang Jiang

tanh 3 [H, o]\ dH
% ) d®

QFI as Asymptotic Operator Series:
Exact and Unique B€Ik€1€y



Euler-Lagrange = ‘Schrodinger’:

N7 = /i// ) )~ /i// (55)) @) on
A
N2

= / L(, ', z)(dx) Action : Integral of Lagrangian

oL d oL Euler-Lagrange differential equation

o dx oY 0 for ¢ (x) that extremizes QF1: Yopt
_wé)/pt + U(x)wopt — )\minwopt

1D particle in a potential ,u(a:‘) B€1‘k€1€y
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Dephasing and Dissipation together — Numerics meet Analytics

Coulomb sources
of charge » — ]\f(efy — 1)

) = mo + y s

(Single mode loss, r,=0)

(1/2 4+ z)

w//(a;) 4 ()\min — 1

) wi) =0

Can be re-couched as Coulomb
spherical wave equation

o)+ (1-21) o) =0

Solutions are ‘Whittaker’ functions
with imaginary arguments

NN

r =10

r = 100

r = 1000

= upper mode photons
= lower mode photons
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Types of noise: Optimal States and Tight Bounds

{0, —, +} — {dephasing, relaxation, excitation} _"Y

‘\,F

19988

Collective Decoherence

Individual Decoherence

Hybrid (Interferometry)

Decoherence Process Dephasing Only (% General Case (I'°, ') General Case (’yo, ~) Collective Dephasing, Loss (FO, Y1, 7Y2)
Conserves S, S*? S: yes, S*: yes S: yes, S?: no S no, S%: 10 @ S: no@S‘z:no
0 =
Universal Parameters wo = N21° po.and 1 = N2(IT +T7)|r = N(e7 R R A 1) po,andry o = N(e'h2 — 1) = 4N6i2
2
: po = € [—%;3] r 1 1 r2
Potential p(x) for N 1 _ _ —
uiw) > {OO 2| > 1 Sy 1— 42? Hoti\12rs 12—
T anT
Alry[(a)i%] (re =0)
: 1
Optimal probe )op; () V2 cos Tz Gauss [0, F] Gauss [0, 1/4] Coss | 1 YI=vE (T1r2)%
2 yma | T
2 VT— 41+ v 2¢/e7 —1 5 Iaal/? (ro = 0)
: _ 0, = 0 —+ =il ey — 0 e €
Expansion of 1/F = v var Oy T 5 r +T@ e + 573 r +(\/_1ﬁ+\/2ﬁ) dL 21\7\/@
~N3/2
2 4 (lail % 1'\0 i ( -0
 elusierine. min var 0 V/2eT0 e’ —1 (e1 + €2) on (7)) 3T (r2=0)
Optimal clustering, min var Qe - i T—|— s (e1ten)3(0y3

22/3  UN(epen)l/3

? Individual dephasing () conserves S* but not S.
b Boson statistics ensures S = N /2, but N is not conserved.

¢ Only for N < 1/[(I'™ + T2/ (m= — F+)2/3],
4 Decreases monotonically (‘cluster size’” N. = o00)

http://arxiv.org/abs/1402.0495



Optimal Probe Summary
af N3
A V] =1+ +9°

1. We examined quantum precision for dephasing, excitation, relaxation, and particle
loss — for both correlated and uncorrelated noise types.

_‘

0

(9Ano9)j09)

et

2. By adirect asymptotic approach we discover tight precision bounds that are
achievable but cannotbe improved on in the N>>1 limit.

3. The approach is constructive — in tandem we learn the structure of the unique
optimal probe states 1))

Optimal probes have smooth features for large qubit ensembles N>>1 — @D’Q (:C)

Quite often the optimal probes have approx gaussian profile of noise-dependent and
N-dependent width, e.g. for local noise 5 ~o N3/4 (top of this page)

6. Creating optimal probe states is challenging, some proposals do exist. Must
determine a cost/benefit trade-off: engineering probes and scaling up to N>>1,
against the improved coefficient ¢ in shot-noise error scaling: 592 > i

- N

Don’t squeeze too far! ©



1

DWave unit cell
2 circuit diagram

4
5 1 5
Fully-connected DWave unit cell s 2 6
graph of 8 spins graph (8 spins) Z 3 7
. > 4 8

t € 0,1]

Ground State at t =1 gives solution to
combinatorial problem encoded in J couplings

D: uaue ﬁX



Quadratic Spin Hamiltonian in Transverse Field

Simple Model: Infinite Range Ising Hamiltonian
Interacting Spins without topological features.
“Lipkin Meshkov Glick”

(related to Dicke model)

1

J? = 4(69) +63 4603 4. )2

Complete graph of 12 spins, edges indicate spin-spin couplings (}gi)&gﬂ

. J2 .
F--rZ_g-nZ A<

/] 7°

Coupling to transverse magnetic field (Bx,0,0)

A

Iz _

Can this Hamiltonian produce an optimal quantum probe state?
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PRL 107, 277201 (2011) PHYSICAL REVIEW LETTERS 30 DECEMBER 2011

Frustration and Glassiness in Spin Models with Cavity-Mediated Interactions

Sarang Gopalakrishnan,' Benjamin L. Lev,"* and Paul M. Goldbart’

'Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, Illinois 61801, USA
2Departments of Applied Physics and Physics, and E. L. Ginzton Laboratory, Stanford University, Stanford, California 94305, USA

3School of Physics, Georgia Institute of Technology, 837 State Street, Atlanta, Georgia 30332, USA
(Received 8 August 2011; published 29 December 2011)

b)

pump laser
Lev Lab ¥
(Stanford) M

n N

trapping lasers

We now proceed to eliminate the cavity modes pertur-
batively, thus arriving at an effective model for the spins,
valid on time scales = 27/ 9:

)2 Vo* (x.
H=H,+ ) lQ(AXZ’)l g“(x’);“(xf) ool +He. (2)

a;i<j



e kiledia Probes for Noisy Interferometry

A

. J j2 Annealing parameter is " € [0,1], decreasing
H = _F__x — (1 — I‘)—Z monotonically as transverse field is gradually
J 32 turned off

Spin-Coh.lGS: =1
GHZ or NOON GS: T =0

‘Goldilocks’GS: T'=2/3

|41) |)2)
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Ground State undergoes a pitchfork bifurcationat ', = —
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Prior Work

(2-mode
BECSs)

a'b + bfa

. +
Jo = ——

Ground state of the double-well condensate for quantum metrology

Juha Javanainen and Han Chen
Department of Physics, University of Connecticut, Storrs, Connecticut 06269-3046

We discuss theoretically the ground state of a Bose-Einstein condensate with attractive atom-atom
interactions in a double-well trap as a starting point of Heisenberg-limited atom interferometry. The
dimensionless parameter governing the quality of the ground state for this purpose is identified. The
near-degeneracy between the ground state and the first excited state severely curtails the prospects
of the thermally prepared ground state in quantum metrology.

Quantum superposition states of Bose-Einstein condensates

J. L. Cirac,! M. Lewenstein.” K. Mélmer,’> and P. Zoller"

Unstitut fiir Theoretische Physik, Universitat Innsbruck, Technikerstrasse 25, A-6020 Innsbruck, Austria
*Commissariat a I’Enegie Atomique, DSM/DRECAM/SPAM, Centre d’Etudes de Sacla» 91191 Gif-sur-Yvette, France
3Institute of Physics and Astronomy, University of Aarhus, DK-8000 Arhus C, Denmark
(Received 16 June 1997)

We propose a scheme to create a macroscopic “‘Schrodinger-cat™” state formed by two interacting Bose
condensates. In analogy with quantum optics, where the control and engineering of quantum states can be
maintained to a large extent, we consider the present scheme to be an example of quantum atom optics at work.

AJ./j
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7 = 95,10, 20,50 0.8
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difference equation to differential equation.

(m) ) = {m) {r'? - r>‘]].;} ) = —E{mlp)

. JE) 1+ =)
T J, = ‘g
TTICT ]
(Annealing ratio) ) = Z .¢m|m>
m=—j
JFm)y =42 —m2+jFm|m+1)
A 4 B 5
1 1 2; 1 m
o1 a1 = — N
Ve 1)\/ +J'—m+w( +1)\/+J+m Y \/j? —m? (1—F+]2>¢

% — 0, ? =y € [~1,1], Ym = YY), Yumx1)— ¥y £9)

by +0) + by —0) = 24(y) _ d*¢Y by +0) —dly —0) _ dy
52 Ty 25 dy




Maps to 1D variable-mass ‘particle’ in a potential V(y)

1. - . E,
{ IZPMl(y)P + V(y)] Vn(y) = ?wn@) J
Hermitian K.E.
M~ Yy) = /1- 3 0 1 p—_isd
= o 2./1— y2 dy

[V(?ﬁ = —%2 — m + O(9) } potential

Ve = 2, V(y) ~ y4/8 Approx. pure quartic potential
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Particle in Ground State of Quartic well (at (= ER phase
transition) is a promising Probe candidate for Quantum Metrology.

Cramer-Rao
1 1
Fim nN

(Coherent - loss)
@ — ~ 7
Fir

1 1
FI 77NN2
(GHZ - loss)

1 eKJO N2
Ff N2
(GHZ -dephasing)
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oy Dynamic Energy spectrum sphttmg as field increases

/372 3z[J]
. ax(j1/73+ @ -aAbs([I]) (@
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r
i34~ perturbgap(r_, j ) ..z,’a-f e ar
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Prior Work on Double-Well Potentials: Tunnel-Splitting Factors

1 J. Phys. A: Math. Gen. 20 (1987) 4309-4319.

Tunnelling of a large spin: mapping onto a particle problem

G Scharft, W F Wreszinskit and J L van Hemmen3

t Institut fiir Theoretische Physik der Universitdt Ziirich, Schonberggasse 9, CH-8001

Ziirich, Switzerland
t Sonderforschungsbereich 123 der Universitdt Heidelberg, D-6900 Heidelberg, Federal
Republic of Germany

Received 30 January 1987

Abstract. Tunnelling of a single quantum spin is studied in the limit of large spin quantum
number S. The problem is mapped onto a particle problem on the positive half-line, with
a Hamiltonian which is invariant under inversion x - 1/x. Not only the ground-state energy
but also all the other energy levels and corresponding level splittings (if any) are computed
by using the conventional Wk B methods for the particle problem and an excellent agreement
with numerical data is found.

1. Introduction

In two recent papers (van Hemmen and Siit6 1986a, b) a wks formalism was presented
to describe the quantum dynamics, including tunnelling, of single spin with large spin
quantum number S. A typical example is provided by the Schrodinger equation (A =1)

d
i (—ys2-as,)u (1)

20 0)4(0)

A:

2 arxiv.org/abs/cond-mat/0003115

Tunnel splittings for one dimensional potential wells revisited

Anupam Garg
Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208
(February 1, 2008)

Abstract

The WKB and instanton answers for the tunnel splitting of the ground
state in a symmetric double well potential are both reduced to an expression
involving only the functionals of the potential, without the need for solving
any auxilliary problems. This formula is applied to simple model problems.
The prefactor for the splitting in the text book by Landau and Lifshitz is
amended so as to apply to the ground and low lying excited states.

v=1.15

Herring’s Formula
B€I‘k€1€ (exponential tails in forbidden region)



50 Qubits

Comparing original system with continuous 1D
‘particle in a potential’ description (numerical)

. J. J>2
H=-TZ _(1-T)=2
y ( )]2
(dots)
1A~y - T E.
[§PM (WP +V(y)| vnly) = ?wn(y)

(continuous curve)

For analytics:
M~ (y) = 1/M(yo) = 1/M,

Simplify ‘variable mass’ in Kinetic term
(take its value at the peak amplitudes)




Scale-free Description: Region Il

2
potential V(y) = —% —V1—-9y2+0(9)

e 2 y* : : .
V(y) =~ —1+ ) (1 - —) + = ‘ Quartic Approximation
Y

2

oy )
9.2 + Vy2 +gy4:| wn — En¢n
| dy

d2
—— +@z’ + 24} On = €n(a)dy

dz?

single parameter characterizing system:

a(j,T) = 4(;%/4)'/® (3 — 2/I)

. 1/6 s o .
Z:y(]2/4)/ AJ, = jAy=jxj- /3= 23



Numerically exact solution of single parameter problem:

_@—l—az —I—z]gbn—en( Ybn

j = 5,10, 20,50

‘Size’ of Critical Region Il : AT ~ Ty — ', = O(N—2/3)

Why care about the location of minimum gap?

Because this is a bottleneck where annealing
has to go slowest -- determines the time-scale of
the process.
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v = 2.00

W

Approximation to states in Region | and lli

—2yo—>

Nl

>1201<€

M’Y:2/7

E AFy
_ - 0.04
0.03
- 0.02

-0.01

-0.0

Region |: weak field Region lll: strong field

Dashed line is energy gap w in thermodynamic limit § ~ o0

wr=+/(T'=2)3-2) , (I <T,)
wirr = 2I'/3 —2/T , (T' > T,)

Fpr N>>1 approx potential as quadratic near minima. GS is pair of
SHO in Region | and a single oscillator in Region Il with
frequencies above.



Calculation of Precision - Noisy Conditions

N > 1 QFIl asymptotic expression: ‘Action’ integral
http://arxiv.org/abs/1402.0495

Vi - /i féy)) W 4/i (i,g))fdy o (ué)B)

Penalty term

Noise potential ,LL(y) — N2x0 1 NKL(L)/(l _ yQ)

function / \

Collective dephasing, Local Noise (dephasing,
or prior Bayesian excitation and/or relaxation.
uncertainty Sometimes called ‘private

baths assumption’)

VKO

6 Berkeley

~ UNIVERSITY OF CALIFORNIA



Dominant Penalty Term in QFI @

A

V' (y)*(dy) = 672 (P?)

condition

Asymptotic smoothness /
(penalizes discontinuities) ./,

1. Schrodinger Eqn. <ﬁ>2>/52 = 91/3[€n(a) — a<22> — <Z4>]

2. Eigenstate result: (|[H, Py]) =0

1 + 2 gives result: <ﬁ2> gl/3

Precision is (asymptotically) a function only of the ground state energy and
its rate of change with parameter — not dependent on ensemble size, noise
strength or noise type.



Locations of Minimum Gap and Maximum Precision

2

d
—o2 +az?® + 2% On = €n(a)dy

a=0 Critical Annealing in
¢ thermodynamic limit

N W A~ Ol O

ap — FF Annealing \_/alue at
Max Precision

ag — 1'g Annealing value at Min Gap

r | 1
1 o kB2 M\ ,
i = K -+ N i avas |\ o 2¢p(ap) — apey(ap)
e e J penalty term
Ultimate bound depends only on probe
L'e _ —2/3
Berkeley Co= g~ AT~To—Te=ON™5



Precision in Presence of Noise
Reglon!s L, 1 1 . li(L) Mw

1/K°

150

F

100 w is ‘quantum’ (Energy gap)

(D) w1 =VIT-2E-2) , (T <T)
@WIH—QF\/ —2/ F>F

30

, Region |l
]./Ii', - - — T L
48t 1401
1201
d? , . F 44 .
——— +az"+ 27| ¢ = €n(a)dn 1101

> i
dz 40}

2 " 0.64 0.66 068 070 T

1 (L) ) M.
[A29]HZ = Uk " SR ( 2)

/
F N " 3N4/3\ 2 (QGO(QF)_“FEO(“F)>

Precision is maximized when the latter term is minimized at @ — ar



Dynamical

Performance

T =23

102
10!

10°

—1 . .
1004 8§ 12 16

P, |thn)

1.0 ——
0.9 r

0.8

0 2 4 6 8

T/3

0.10
0.08
0.06
0.04
0.02
0.00

10

How likely are we to stay in the ground state for a
linear annealing of total time 7 ? (Noiseless Case)

' =0.55

4 8 12 16
|¢on)

N e€{25,50,100}

2 4 6 8 10

T/J

Time Complexity?

1
T%/
r,

(Van Dam, Mosca and Vazirani)

T ~ O(N)

Annealing time scales
linearly with number of
qubits, irrespective of
where the annealing halts.

d(jH)
dl’

dI’
2
(D)

Terminated in Region@ Terminated in Region@

Evolution will be approximately adiabatic for longer annealing times, i.e. state

will remain mostly in instantaneous ground state.



Convergence of Numerics
to Asymptotic Results

Precise convergence is fairly
slow, requiring spin ensembles
of N>1000. For QFI this is due
to the first neglected term in the
asymptotic expansion being

only 1
°(37)

smaller than the last included
term. N must be large for the
terms to separate out.

p(0) = Z Ai|s) (]

5.0
4.8°
S 46l °
>
— 4.4r o
< o
mz . 42” OO
~ | O
?\]\_/ 0 OOOo
3.8} ®%054,
________________ °%%000000qa
3.6 €2(ag) — €o(ap) ~ 3.6519
10* 102 103 N
. 1.8
H/‘; 1.6 QEO(QF) — (ZFGE)((J,F) ~ 1.4239
N L A BB ABBA
2|4 14 “5-5-5-5-&5 i
— 1.2 : § A _
N = 400
"o 1.0 . ; 8 N =800 -
| ok o N = 1200
i, 08f s f” o N = 1600
v06_:5 e N = 2000]
2l k8 o N = 2400
w04 o N = 2800
102 103 10
po = K°N?
(A — ;)2 L2
aad (COARAT
AEAR Y]
Ai + A




Numerics Validate Approximations:

® @ O

1. Large interacting spin model = single particle in a potential:
OK for metrology beyond thermodynamic limit, gives leading
finite size corrections.

2. Asymptotic Formula for Quantum Fisher Info is validated.

3. Exact numerical solution of particle in quartic well gives all
significant physics at @Eﬁ&h phase transition, including
minimum gap, maximum precision and entanglement.

4. Relevant Properties of system are universal and independent

of ensemble size N or noise strength/type, as long as their
product is >>1, everything determined in (el [{[F2 /¢ region
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Importance of finite size corrections f(NV)

(locating maximum correlation via control parameter)

0 09 90 006
Qp . Q) Qb
e ®o ee of?l
e @0“0 ®e

@oqzmqo
dod{ @e e
@00%,?.“

‘zmv oo
Q@ ®e oﬁ”) (”b
o®‘di’dil’ob

We have seen
significance for
quantum annealers of
mesoscopic N

Dwave | (N= 128 Qubits)

|2 Selected for a Viewpoint in Physics

PRL 113, 238102 (2014) PHYSICAL REVIEW LETTERS

5 DECEMBER 2014
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Also important for
biological systems, e.g. N

~500 swarming midges

week ending

S

Finite-Size Scaling as a Way to Probe Near-Criticality in Natural Swarms

Alessandro Attanas1 ? Andrea Cavagna, 1231 Lorenzo Del Castello,"
Leonardo Pan31 * Oliver Ponhl, 2 Bruno Rossaro Edward Shen, 2 Edmondo Sllvestn

midges exhibit swarming close to phase transition:

swarming (disordered) to flocking (ordered)

(Viscek model)

2 Trene Glardma 123 Stefania Melillo,l’z’*
® and Massimiliano Viale'*




Conclusions and QOutlook

- Model: Infinite Range Ising Hamlitonian Model of Interacting Spins -
no topological features. Spin-Squeezing, BECs etc.

- Anneal to ground state of width \/ 2/3near criticality.
Requires annealing precision: AT ~ N—2/3

- GS robust against noise, provides optimal metrological precision for N >> 1

- Adiabatic quantum annealing to critical Region Il faster than to
GHZ state in Region | - linear in N for both

- Quantum Annealers (Dwave)? Individually addressable qubit couplings.

- Uniform couplings produce useful interesting quantum states — what if

individually addressable couplings? Annealing ~ Quantum State
Preparation!

- Molmer RISQ paper — Not just metrology, Quantum Simulation

New inverted computational task — Find optimal Hamiltonian couplings --
- ground state to best approximate known quantum target



arXiv.org > quant-ph > arXiv:1602.08752

Quantum Physics

Goldilocks Probes for Noisy Interferometry via Quantum Annealing to Criticality

Gabriel A. Durkin
(Submitted on 28 Feb 2016)

Quantum annealing is explored as a resource for quantum information beyond solution of classical combinatorial problems. Envisaged as a generator of robust interferometric probes,
we examine a Hamiltonian of N >> 1 uniformly-coupled spins subject to a transverse magnetic field. The discrete many-body problem is mapped onto dynamics of a single one-
dimensional particle in a continuous potential. This reveals all the qualitative features of the ground state beyond typical mean-field or large classical spin models. It illustrates explicitly
a graceful warping from an entangled unimodal to bi-modal ground state in the phase transition region. The transitional *Goldilocks' probe has a component distribution of width N%3
and exhibits characteristics for enhanced phase estimation in a decoherent environment. In the presence of realistic local noise and collective dephasing, we find this probe state
asymptotically saturates ultimate precision bounds calculated previously. By reducing the transverse field adiabatically, the Goldilocks probe is prepared in advance of the minimum gap
bottleneck, allowing the annealing schedule to be terminated "early'. Adiabatic time complexity of probe preparation is shown to be linear in N

(L= principle is all-pervasive on arxiv.org

arXiv.org > quant-ph > arXiv:1111.4982

Quantum Physics

The quantum Goldilocks effect: on the convergence of timescales in quantum transport

Seth Lloyd, Masoud Mohseni, Alireza Shabani, Herschel Rabitz
(Submitted on 21 Nov 2011)
arXiv.org > astro-ph > arXiv:0709.2309

Astrophysics

Evolutionary Catastrophes and the Goldilocks Problem

Milan M. Cirkovic
(Submitted on 14 Sep 2007)

arXiv.org > hep-ph > arXiv:0709.0297

High Energy Physics - Phenomenology

Goldilocks Supersymmetry: Simultaneous Solution to the Dark Matter and Flavor Problems of
Supersymmetry

Jonathan L. Feng, Bryan T. Smith, Fumihiro Takayama
(Submitted on 4 Sep 2007 (v1), last revised 15 Jan 2008 (this version, v3))

arXiv.org > astro-ph > arXiv:1102.3926

Astrophysics > Earth and Planetary Astrophysics

Habitability of the Goldilocks Planet Gliese 581g: Results from Geodynamic Models Berkel€

UNIVERSITY OF CALIFORNIA }

W. von Bloh, M. Cuntz, S. Franck, C. Bounama
(Submitted on 18 Feb 2011 (v1), last revised 22 Feb 2011 (this version, v2))
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Timeline Saved

Mar 03,00:33

Envisaged as a generator of robust

= interferometric probes, we examine a
Hamiltonian of N >> 1 uniformly- couple...

Mar 02, 14:35

Scaling laws for precision in quantum
interferometry and bifurcation landscape
of optimal state

Text input

Envisaged as a generator of robust interferometric probes, we examine a Hamiltonian of N >> 1 uniformly- coupled spins
subject to a transverse magnetic field. We map the discrete many-body problem onto dynamics of a single one-
dimensional particle in a continuous potential. This reveals all the qualitative features of the ground state beyond mean-
field or large classical spin models. It illustrates explicitly a graceful warping from an entangled unimodal to bi-modal
ground state in the phase transition region. The transitional ‘Goldilocks’ probe has a component distribution of width
N2/3 and exhibits characteristics for enhanced phase estimation in a decoherent environment. In the presence of noise,
precision is found to be supra-classical for ground states prepared in the strong transverse field regime, peaking at
criticality, and inferior to classical unentangled probes in the weak field limit. By reducing the transverse field adiabatically,
the optimal probe is prepared in advance of the minimum gap, allowing the annealing schedule to be terminated ‘early’.
The adiabatic time complexity of probe preparation is shown to be linear in N .

Similar to input text:

Durkin, Gabriel A. ﬁ?

Goldilocks Probes for Noisy Interferometry via Quantum Annealing to Criticality (2016)

Quantum annealing is explored as a resource for quantum information beyond solution of classical combinatorial problems.
Envisaged as a generator of robust interferometric probes, we examine a Hamiltonian of N >> 1 uniformly-coupled spins
subject to a transverse magnetic field. The discrete many-body problem is mapped onto dynamics of a single one-...

MORE LIKE THIS READ PDF arXiv

Allahverdyan, Armen E./ Balian, Roger / Nieuwenhuizen, Theo M. ﬁf}

Phase transitions and quantum measurements (2005)

In a quantum measurement, a coupling g between the system S and the apparatus A triggers the establishment of
correlations, which provide statistical information about S. Robust registration requires A to be macroscopic, and a
dynamical symmetry breaking of A governed by S allows the absence of any bias. Phase transitions are thus a paradigm for...

MORE LIKE THIS READ PDF arXiv
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Global Entanglement
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Logarithm of squared overlap with nearest
separable state (red curve)

Can be argued that in the fully symmetric
j=N/2 subspace the nearest separable state
iS a spin coherent state. It has width:

1
Ay X —

VJ
Az x Ay j1/3 o« j71/6

(width of spin coh. state in scale-free coords)

1

oo ~ —1 N
g 60g2

Maximum entanglement is in Critical Region
Il. Confirms central result of PRL 101,
025701 (2008).

Also note G < N — 1 ingeneral.



Sudden

F(t.0 F(t,0)
Quench - 5
Dynamics ; °
Collective Dephasing Z o
(also look at local
. - - .
noise processes) g €
0.32 031 | | 1 0.32 N5

exp{—iJ,0} exp{—iJ2t/] }(‘ _>>®N)

1/F =k’ +¢/N

Berkeley

UNIVERSITY OF CALIFORNIA



RAPID COMMUNICATIONS

PHYSICAL REVIEW A 87, 051801(R) (2013)

Efficient spin squeezing with optimized pulse sequences

C. Shen” and L.-M. Duan
Department of Physics, University of Michigan, Ann Arbor, Michigan 48103, USA and
Center for Quantum Information, IIIS, Tsinghua University, Beijing 100084, China
(Received 12 April 2013; published 14 May 2013)

Spin squeezed states are a class of entangled states of spins that have practical applications to precision
measurements. In recent years spin squeezing with one-axis twisting (OAT) has been demonstrated experimentally
with spinor Bose-Einstein condensates (BECs) with more than 10° atoms. Although the noise is below the standard
quantum limit, the OAT scheme cannot reduce the noise down to the ultimate Heisenberg limit. Here we propose
an experimentally feasible scheme based on optimized quantum control to greatly enhance the performance of
OAT to approach the Heisenberg limit, requiring only an OAT Hamiltonian and the use of several coherent driving
pulses. The scheme is robust against technical noise and can be readily implemented for spinor BECs or trapped
ions with current technology.

exp{—iJ,0} exp{—iJ?t/j}| | =)®N

N / closed oscillator algebra
A2 A9 A A A A
{27, p°, (p+p2)}
o \/ Most general propagator within this algebra
. N +1 .

1 R . A A
Sy 1> — 5 +§(p2+$2) exp{ionf —|-25Jy ‘|‘7/Y(Jz<]a: + JmJZ)}

Now, a 3D optimization, no ordering problem



Estimation of Phase and Diffusion: Combining Quantum Statistics and Classical Noise

Sergey I. Knysh* and Gabriel A. Durkinf
Quantum Artificial Intelligence Laboratory (QUAIL), NASA Ames Research Center, Moffett Field, California 94035, USA
(Dated: July 22,2013)

Coherent ensembles of IV qubits present an advantage in quantum phase estimation over separable mixtures,
but coherence decay due to classical phase diffusion reduces overall precision. In some contexts, the strength
of diffusion may be the parameter of interest. We examine estimation of both phase and diffusion in large spin
systems using a novel mathematical formulation. For the first time, we show a closed form expression for the
quantum Fisher information for estimation of a unitary parameter in a noisy environment. The optimal probe
state has a non-Gaussian profile and differs also from the canonical phase state; it saturates a new tight precision
bound. For noise below a critical threshold, entanglement always leads to enhanced precision, but the shot-noise
limit is beaten only by a constant factor, independent of N. We provide upper and lower bounds to this factor,
valid in low and high noise regimes. Unlike other noise types, it is shown for N >> 1 that phase and diffusion
can be measured simultaneously and optimally by canonical phase measurements.

o)
— PACS numbers: 42.50.-p,42.50.5t,06.20.Dk
-
N . 020 y T 020 r
— Dephasing, or a random uncontrollable phase accumula- Mo >
= ‘
=

tion, is one of the most important types of noise in quantum fli | L (:li ' HWHWMMW"R
No trade-off generally in joint
optimal measurement of phase
and strength of phase noise for

ARTICLE N>>1

Received 26 Sep 2014 | Accepted 3 Mar 2014 | Published 14 Apr 2014 nn
Joint estimation of phase and phase diffusion
for quantum metrology

A/ KJO

Mihai D. Vidrighinw, Gaia Donatiz, Marco G. Genoni1'3, Xian-Min Jin2'4, W. Steven Kolthammerz, M.S. Kim1,
Animesh Dattaz, Marco Barbieri2 & lan A. Walmsley2

)0

systems, responsible for a transition from quantum to classi-

= 0

Phase estimation, at the heart of many quantum metrology and communication schemes, 9
can be strongly affected by noise, whose amplitude may not be known, or might be subject
to drift. Here we investigate the joint estimation of a phase shift and the amplitude of

phase diffusion at the quantum limit. For several relevant instances, this multiparameter Optl mal pro be IS Pegg-Su mmy-

estimation problem can be effectively reshaped as a two-dimensional Hilbert space model,

encompassing the description of an interferometer probed with relevant quantum states— Be rry_Wi Se m an (S i ne) Opti m al
)

split single-photons, coherent states or NOON states. For these cases, we obtain a trade-off

bound on the statistical variances for the joint estimation of phase and phase diffusion, as m easu re me nt iS Cano n ical p hase

well as optimum measurement schemes. We use this bound to quantify the effectiveness of

an actual experimental set-up for joint parameter estimation for polarimetry. We conclude by

discussing the form of the trade-off relations for more general states and measurements. m eaSU re me nt .



Dephasing: Operator Approach % =2 €[5
Y > P()
+J
Probe state |¢> _ Z ¢m|m>
m=—j
before dephasing |1)) ()| |_>/ V() (y)|z) (y| dady

after dephasingp(FO @2FO X >¢ ’55 y’dazdy

Free particle
Feynman propagam\ﬁL; dxdy eXp{ ,UO T — /2}|:U y‘ — e PQ/(QMO)
T,y

in imaginary time!

V)2, T~V /2 7 1

=e : = lo <
" - g¢2(X)
= P(X)e 2op(X)

Mass parameter |(ig = [NV 2Fﬂ

i :p2/2ﬂo

)

Dephased density matrix is interms of canonical X
and P operators of the Heisenberg group




O pe ratO r O rd e ri N g S http/arxiv.org/pdf/math-ph/0506007v1.pdf (Suzuki)

\P_ V)2 -T —V/2 _ —H Symmetric ‘Strang’ splitting
— € of Density Matrix

2 .
No even-order contributions - eaera:B — ex(A+B)+O($ ) Typical BCH

first non-trivial contribution at
3rd order

5 A B A _ 6:1:(A—|—B)—|—O(:z:3) Strang

—Ho—H{—--

/0 = € Dephased Density Matrix: thermal state of Abstract Hamiltonian

Hy =T + V, Kinetic + Potential Energies

Hy = [T, [T, V] + £V, [T, V] = — 1L 4 v2

First non-trivial contribution

Asymptotic series in o 20
mass parameter po = N7T BQI’k€l€y
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New Operator Form for QF] F ="Tr(L?p)

p = e_H Write mixed state in exponential form, and evolve via parameter ()

1 d
§{€_H, L} = d—'g = —z’[Sz, G_H} Sylvester and Schrodinger equations
1
5(6_711 et +e? L e_%) = —z(e_%Sze+% — e%Sze_%)
1
Using identity e Be ™ = exp([A,e|)B =B+ [A,B] + [ , A, B]] +

cosh(3[H,e])L = —2isinh(

N —

1, o]) S*

> |L = —2itanh(3[H,e])S?

Nl

using algebraic properties of ‘inner derivation’ [H , 0] , L is a series of nested commutators



Operator Method for Phase Diffusion

p=e V2 TeV/2 = o—H

Combining Two Asymptotic Operator Series to 3'd order: tanhx ~ x — :173 / 3

1. F = < [SZ, ) tanh(% [[—L .]) Sz] > Fisher Information for Unitary Shiftby ¢
2. H = (T + V) 4+ 1_12 [T’ [T7 V]] + 2_14 [V’ [T’ VH ... Suzuki-Trotter-Strang

After some very careful book-keeping...

V—log L/Y3(X) , T=P*2u0 , [X,Pl=i , [P,f(X)] = —if'(X).

F 1 1 dip\ 1
- - ) de+ 0Ol =
N2 po g <dw> o (ug) .

y 2170
po = N°T o R "
....oemi-Classical asymptotic expansionin mass parameter, e.g. ~
Mass parameter o




ldea to combine phase noise I'’+ loss R

[—NFO+—/( 2 ZIZ;d.CIZ I

Dephasing result respects total particle
number, e.g. n-k, if k photons lost.

p(n, k)

Wk

Un = Yn

N
— an,k y W = Zp(nv k)¢2
n=k

Probability to lose k photons from n in lower mode

p(n, k) = (Z) Rl =R ~ \/27rk(11— R) {_%(fii R) (n ) %>2}

Gaussian Approximation

_ p(:;akk) (% %d—[logp(n k)])2

Replace in dephasing expression for 1/F and integrate over k lost photons

1 0 1 12 4 2
[F 1Tt e /(dx) (@D @t i m)} Berkeley

UNIVERSITY OF CALIFORNIA




Quantum Fisher Information as Classical Action

F 1 1 A 1
- - ) de+r O =
N2 po  pd <d$) " <u8)|

Dephasing case just worked out
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