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- A Quantum Metrology View
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Phase Estimation in 
presence of Decoherence
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Start with fixed N: qubits, spins, photons

Dephasing or Phase Diffusion occurs 
because of thermal or acoustic motion of 
mirrors M1, M2 or noise intrinsic to laser 
source. Coherence lost but not energy.

Dissipation or Loss occurs 
because of imperfect detection, 
scattering and absorption in 
optical elements

Excitation/Relaxation occurs if 
qubits coupled to bath at finite 
temperature.

Dynamics of Andrea Smirne’s talk



Noisy Quantum Dynamics – Lindblad form

Collective noise (correlated)

Individual noise (uncorrelated)

Collective spin z operator produces 
unitary shift

excitation

relaxation

dephasing

bath

bathsqu
bi

ts



Collective Dephasing – e.g. Mirror Fluctuations
(equivalent to prior phase uncertainty in Bayesian approach: 
2014 New J. Phys. 16 113002, Macieszczak, Fraas and Demkowicz-Dobrzański)

Lindblad Master equation

Mixture of pure states, evolved by random phases. Gaussian-distributed 
with mean      and variance

Density Matrix element unitary shift dephasing

increases linearly in time for Markovian dynamics





Numerics Reveal Bifurcations in Optimal State

N=40

N=400
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N=120 Qubits or Photons

Early numerics suggested cv approach 

(dephasing)

(for large N and/or large noise, the optimal state has smooth features)
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Quantum Fisher information for states in exponential form
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We derive explicit expressions for the quantum Fisher information and the symmetric logarithmic derivative
(SLD) of a quantum state in the exponential form ρ = exp(G); the SLD is expressed in terms of the generator G.
Applications include quantum-metrology problems with Gaussian states and general thermal states. Specifically,
we give the SLD for a Gaussian state in two forms, in terms of its generator and its moments; the Fisher
information is also calculated for both forms. Special cases are discussed, including pure, degenerate, and very
noisy Gaussian states.
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I. INTRODUCTION

Quantum metrology studies the limit to the accuracy,
set by quantum mechanics, with which physical quantities
can be estimated by measurements. The basic idea is to
determine an unknown parameter θ by probing a quantum
state that depends on the parameter. Quantum metrology
is important for various purposes, which include improving
time and frequency standards [1,2], detecting gravitational
waves [3,4], interferometry based on interacting systems [5,6],
and magnetometry [7,8].

A standard scenario for quantum parameter estimation is
to put a known initial state ρin through a quantum channel Eθ

that impresses θ on the system; the output state ρ(θ ) = Eθ (ρin)
is then subjected to a measurement. The goal is to find the
optimal measurement strategy so that as much information as
possible about θ is acquired. Although it is hard to solve the
most general problem exactly, bounds on how accurately one
can estimate a parameter can be obtained [9–12].

In classical parameter estimation theory, the Cramér-Rao
bound (CRB) expresses a lower bound on the variance of an
unbiased estimator θest,

var(θest) ! 1
Ic(θ )

, (1.1)

where Ic(θ ) is the classical Fisher information [13]. Fisher’s
theory says that maximum likelihood estimation achieves the
CRB asymptotically for a large number of trials [14,15].
For the quantum case, it was shown, in [16], that there
exists an optimal quantum measurement whose classical
Fisher information, obtained from the measurement outcomes,
achieves the quantum Fisher information [16–19],

I(θ ) = tr[ρ(θ )L2(θ )]. (1.2)

Thus the inverse of the quantum Fisher information gives the
quantum CRB on the variance of an estimator. The (Hermitian)
operator L(θ ), in Eq. (1.2), is the symmetric logarithmic
derivative (SLD), defined implicitly by

dρ(θ )
dθ

= 1
2
{L(θ ),ρ(θ )}, (1.3)

where the curly braces denote the anticommutator. Knowing
the SLD allows one to obtain not only the Fisher information
but also the optimal measurement scheme.

Any full rank quantum state ρ(θ ) can be written in
exponential form,

ρ(θ ) = eG(θ), (1.4)

with the normalization absorbed into G(θ ). The case that ρ(θ )
is not invertible can be handled as a limit in which some
eigenvalues of G(θ ) go to minus infinity. The form (1.4)
is useful when G(θ ) takes a simple form, examples being
Gaussian states and general thermal states. Gaussian states
are important because of their appealing properties for
quantum-metrology tasks [20–22] and their accessibility both
to experimentalists and theorists. Thermal states are also useful
for quantum-metrology tasks for at least two reasons: (i) The
initial state is often a thermal state ρin = e−βH /Z, and the
simple exponential form is preserved by a unitary channel Uθ .
(ii) We can infer the temperature and the chemical potential by
measuring the state ρ(θ ) = e−β(H−µN)/Z, after the system is
brought to thermodynamic equilibrium with a reservoir [23].

In Sec. II we consider the SLD for a quantum state in the
exponential form (1.4). We show that the SLD can be expanded
into a weighted sum of dG/dθ and its recursive, nested
commutators with G. Simple expressions of the quantum
Fisher information and the SLD are given in the basis where
G is diagonalized. In Sec. III we apply the results of Sec. II
to Gaussian states, and an explicit expression of the SLD in
terms of the generator is derived. In Sec. IV, also for Gaussian
states, the SLD and the quantum Fisher information are given
in terms of the moments of position and momentum operators
(or of creation and annihilation operators).

II. QUANTUM FISHER INFORMATION FOR STATES
IN EXPONENTIAL FORM

A useful expression (see Eq. (2.1) of Ref. [24]) for density
operators of the exponential form (1.4) is

ρ̇ =
∫ 1

0
esG Ġ e(1−s)G ds, (2.1)

where an overdot denotes a derivative with respect to θ . We
now use the nested-commutator relation

eGAe−G = A + [G,A] + 1
2!

[G,[G,A]] + · · ·

=
∞∑

n=0

1
n!

Cn(A) = eC(A), (2.2)
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Arbitrary dynamics, for parameter        by Zhang Jiang

QFI as Asymptotic Operator Series:
Exact and Unique



Euler-Lagrange = ‘Schrodinger’:

Euler-Lagrange differential equation 
for          that extremizes QFI:

Action : Integral of Lagrangian
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Dephasing and Dissipation together – Numerics meet Analytics

Coulomb sources   
of charge 

(Single mode loss, r2=0)

(N=30)

Can be re-couched as Coulomb 
spherical wave equation  

Solutions are ‘Whittaker’ functions 
with imaginary arguments

0, 30

30, 0

15,15

(N=100)

= upper mode photons
= lower mode photons

30 unconstrained variables but 
only 1 fitting parameter in model

r = N(e� � 1)



Types of noise: Optimal States and Tight Bounds

3

Collective Decoherence Individual Decoherence Hybrid (Interferometry)

Decoherence Process Dephasing Only (�0) General Case (�0,�⌥) General Case (�0, �⌥) Collective Dephasing, Loss (�0, �1, �2)
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TABLE II: Summary of Main Results: For each of the 4 regimes, classified according to conservation or non-conservation of total spin S
and its projection Sz , we list: the form of the ‘potential’ µ(x), the optimal probe state  opt, and leading terms in the expansion of reciprocal
of QFI. The final row lists the minimum phase uncertainty, for cluster size N = Nc optimized for fixed product ⌫N of total resources.
Here Gauss[a,�] denotes  (x) = (2⇡�2

)

�1/4
exp[�(x � a)2/(4�2

)] and Airy[�] is shorthand for (Ai

0
(a1)

p
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Ai(x/� + a1), where
a1 ⇡ �2.338 is the first zero of the Airy function.

The effect of decoherence is a nearly complete suppression
of phase-carrying elements of the density matrix except those
close to the main diagonal. Consequently, only those states
where amplitudes form a continuum retain utility for quantum
phase estimation; those with only a few discrete components,
such as GHZ/NOON states, quickly lose all information about
the phase. The naive optimization of lower bounds on phase
uncertainty that have appeared elsewhere5,9 would yield such
sub-optimal states.

Identifying amplitudes of the probe state  m = hS,m| i
with a continuous function  (x) for x = m/N , we formulate
the QFI as a functional in  (x) and its derivatives. Extremiz-
ing this functional produces an Euler-Lagrange equation anal-
ogous to a ‘Schrodinger equation’ for the ground state of a
particle in a 1D potential (see Methods). In this analogy, the
ground state ‘energy’ eigenvalue �min determines the mini-
mum attainable phase variance:

� 00
opt + µ(x) opt = �min opt ,

var ✓est > �min/(⌫N
2

) .
(3)

The form of the potential well µ(x) depends on the ‘flavor’
and strength of decoherence. It should also include infinite
walls µ(x) = +1 for |x| > 1/2 to ensure that the wavefunc-
tion vanishes outside the interval: �N/2  m  N/2.

In fact, pure collective dephasing corresponds to this infi-
nite square well µ(x) = µ

0

, addition of local uncorrelated de-
coherence contributes point-like (repulsive) Coulomb poten-
tials at the boundaries x = ±1/2, whose ‘charge’ increases
with the strength of decoherence. An illustrative hybrid case
is that of interferometry, where collective dephasing and local
particle loss are the relevant noise types. Other important sce-
narios include strong collective decoherence where relaxation

and excitation are significant, then the potential has a differ-
ent shape. All results are discussed in the sections to follow
and are summarized in table II. To lowest order they admit an
intuitive interpretation in terms of error analysis, e.g. collec-
tive dephasing (random spreading of the phase), results in an
additive contribution �

0 to the mean-squared error.
We have corroborated our results with numerical study, pre-

sented in figures: 2, 3, 4 and discussed in detail in the Supple-
ment. As seen in fig.2(a) and fig.4, the characteristic asymp-
totic behavior will often ‘set in’ for relatively small particle
number 10 < N < 100, allaying concerns that these results
are of interest only in the limit of very large ensembles.

Collective Dephasing

In the following sections we describe various noise combi-
nations in more detail, but let us begin with the simplest sce-
nario, that of ‘pure’ collective dephasing. It is the dominant
noise in atom and spin ensembles, where energy and particle
number are conserved23. It occurs in light beams due to laser
noise, optical path length fluctuations24 and radiation pressure
at the surface of mirrors7,25. It plays a role in optic-fiber in-
terferometric sensors26 where thermal perturbations and me-
chanical strains can lead to measurable diffusion in both inter-
ferometric phase and polarisation of light. Collective dephas-
ing is the prevalent noise for ions confined to traps27.

The distinguishing feature of the pure collective de-
phasing is the uniform suppression of off-diagonal ma-
trix elements of the density matrix. For matrix element
⇢mm0

= hS,m|⇢|S,m0i the exponential suppression factor
exp

⇥
��

0

(m � m0
)

2/2
⇤

depends only on the distance from

http://arxiv.org/abs/1402.0495



Optimal Probe Summary

1. We examined quantum precision for dephasing, excitation, relaxation, and particle 
loss – for both correlated and uncorrelated noise types.

2. By a direct asymptotic approach we discover tight precision bounds that are
achievable but cannot be improved on in the N>>1 limit.

3. The approach is constructive – in tandem we learn the structure of the unique
optimal probe states 

4. Optimal probes have smooth features for large qubit ensembles N>>1
5. Quite often the optimal probes have approx gaussian profile of noise-dependent and 

N-dependent width, e.g. for local noise 
6. Creating optimal probe states is challenging, some proposals do exist. Must 

determine a cost/benefit trade-off: engineering probes and scaling up to N>>1 , 
against the improved coefficient     in shot-noise error scaling:

Don’t squeeze too far! J

(local)

(collective)

(top of this page)

� ⇠ 4

r
N3

e� � 1



Quantum Annealing?

H(t) = �(1� t)S
x

� t
X

i 6=j

J
ij

�(i)
z

�(j)
z

t 2 [0, 1]

Fully-connected 
graph of 8 spins

DWave unit cell 
graph (8 spins)

DWave unit cell 
circuit diagram

Ground State at t =1 gives solution to 
combinatorial problem encoded in J couplings



Simple Model: Infinite Range Ising Hamiltonian
Interacting Spins without topological features.
“Lipkin Meshkov Glick”

Complete graph of 12 spins, edges indicate spin-spin couplings

Coupling to transverse magnetic field (Bx,0,0)

Can this Hamiltonian produce an optimal quantum probe state?

(related to Dicke model) 



Lev Lab
(Stanford)



Probes for Noisy Interferometry
Annealing parameter is Γ ∈ 0,1 , decreasing 
monotonically as transverse field is gradually 
turned off

Spin-Coh. GS: Γ = 1

GHZ or NOON GS: Γ = 0

Ground State undergoes a pitchfork bifurcation at

‘Goldilocks’ GS: 	  	  Γ = 2/3



Prior Work
(2-mode 
BECs)

Minimum Gap ‘Width’ Ground State



difference equation to differential equation.

(Annealing ratio)

1

j
7! �,

m

j
7! y 2 [�1, 1],  m 7!  (y),  (m±1) 7!  (y ± �)



Maps to 1D variable-mass ‘particle’ in a potential V(y)

V (y) = �y2

�
�
p

1� y2 +O(�)

Hermitian K.E.

potential

Approx. pure quartic potential



Particle in Ground State of  Quartic well (at phase 
transition) is a promising Probe candidate for Quantum Metrology. 

V (y) = �y2

�
�
p

1� y2 +O(�)

(Coherent - loss)

(GHZ - loss)

(GHZ -dephasing)

Cramer-Rao

III

II

I

I



Mathematica:
44.2201 sec

numpy:
605 millisec

Energy spectrum splitting as field increases

II

I



Prior Work on Double-Well Potentials: Tunnel-Splitting Factors

Herring’s Formula
(exponential tails in forbidden region)

arxiv.org/abs/cond-mat/00031151. 2.

I



-

I

III

II(dots)

(continuous curve)

Simplify ‘variable mass’ in Kinetic term
(take its value at the peak amplitudes)

Comparing original system with continuous 1D 
‘particle in a potential’ description (numerical)

For analytics:



V (y) = �y2

�
�
p

1� y2 +O(�)

Quartic Approximation

single parameter characterizing system:

potential

II



Why care about the location of minimum gap?

Because this is a bottleneck where annealing 
has to go slowest -- determines the time-scale of 
the process.

Numerically exact solution of single parameter problem:

‘Size’ of Critical Region II :

III

II

I



Region I: weak field       Region III: strong field

Dashed line is energy gap 𝜔 in thermodynamic limit 

Fpr N>>1 approx potential as quadratic near minima. GS is pair of 
SHO in Region I and a single oscillator in Region III with 
frequencies above.



Collective dephasing,
or prior Bayesian 
uncertainty

Local Noise (dephasing, 
excitation and/or relaxation. 
Sometimes called ‘private 
baths assumption’)

http://arxiv.org/abs/1402.0495
QFI asymptotic expression: ‘Action’ integral

Noise potential 
function

Penalty term



Asymptotic smoothness 
condition
(penalizes discontinuities)

1. Schrodinger Eqn.

2. Eigenstate result:

1 + 2 gives result:

Precision is (asymptotically) a function only of the ground state energy and 
its rate of change with parameter   – not dependent on ensemble size, noise 
strength or noise type.

II

(Hellman-Feynman)



II

Annealing value at Min Gap

Critical Annealing in 
thermodynamic limit
Annealing Value at 
Max Precision

penalty term
depends only on probeUltimate bound



𝜔	  is ‘quantum’ (Energy gap)

Precision is maximized when the latter term is minimized at 

Regions I, III

Region II

I

III



How likely are we to stay in the ground state for a
linear annealing of  total time 𝜏 ? (Noiseless Case)

Evolution will be approximately adiabatic for longer annealing times, i.e. state 
will remain mostly in instantaneous ground state.

Annealing time scales 
linearly with number of 
qubits, irrespective of 
where the annealing halts.

(Van Dam, Mosca and Vazirani)

II I



Precise convergence is fairly 
slow, requiring spin ensembles 
of N>1000. For QFI this is due 
to the first neglected term in the 
asymptotic expansion being 
only 

smaller than the last included 
term. N must be large for the 
terms to separate out.



1. Large interacting spin model = single particle in a potential: 
OK for metrology beyond thermodynamic limit, gives leading 
finite size corrections.

2. Asymptotic Formula for Quantum Fisher Info is validated.

3. Exact numerical solution of particle in quartic well gives all 
significant physics at phase transition, including 
minimum gap, maximum precision and entanglement.

4. Relevant Properties of system are universal and independent 
of ensemble size N or noise strength/type, as long as their 
product is >>1, everything determined in region

IIIIII



Importance of finite size corrections 

We have seen 
significance for 
quantum annealers of 
mesoscopic N

Also important for 
biological systems, e.g. N 
~500 swarming midges

Dwave I (N= 128 Qubits)

(locating maximum correlation via control parameter)

midges exhibit swarming close to phase transition: 
swarming (disordered) to flocking (ordered)

(Viscek model)



- Model: Infinite Range Ising Hamlitonian Model of Interacting Spins -
no topological features. Spin-Squeezing, BECs etc.
- Anneal to ground state of width           near criticality. 
Requires annealing precision: 

- Adiabatic quantum annealing to critical Region II faster than to 
GHZ state in Region I - linear in N for both

- GS robust against noise, provides optimal metrological precision for N >> 1

- Quantum Annealers (Dwave)? Individually addressable qubit couplings.

- Uniform couplings produce useful interesting quantum states – what if  
individually addressable couplings? Annealing ~ Quantum State 
Preparation!

- Molmer RISQ paper – Not just metrology, Quantum Simulation  

New inverted computational task – Find optimal Hamiltonian couplings --
- ground state to best approximate known quantum target 



principle is all-pervasive on arxiv.org



lateral.io : deep neural network for literature review/discovery  



Following slides are back-up



I III

II

Logarithm of squared overlap with nearest 
separable state (red curve)

Can be argued that in the fully symmetric 
j=N/2 subspace the nearest separable state 
is a spin coherent state. It has width:

(width of spin coh. state in scale-free coords)

Maximum entanglement is in Critical Region 
II. Confirms central result of PRL  101,  
025701  (2008).

in general.Also note



exp{�i ˆJy✓} exp{�i ˆJ2
z t/j}

✓
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◆

1/F = 0 + "/N

Sudden 
Quench 
Dynamics

Collective Dephasing
(also look at local 
noise processes)



exp{�i ˆJy✓} exp{�i ˆJ2
z t/j}

✓
| !i⌦N

◆

closed oscillator algebra

Most general propagator within this algebra

Now, a 3D optimization, no ordering problem



No trade-off generally in joint 
optimal measurement of phase 
and strength of phase noise for 
N>>1

Optimal probe is Pegg-Summy-
Berry-Wiseman (Sine), optimal 
measurement is canonical phase 
measurement.

✓̄



Dephasing: Operator Approach

Probe state

before dephasing

after dephasing

Free particle 
Feynman propagator 
in imaginary time!

Mass parameter

Dephased density matrix is in terms of canonical X 
and P operators of the Heisenberg group

=  (X̂)e�
P̂2

2µ0  (X̂)

Z

x,y

dxdy exp{�µ0(x� y)

2
/2}|xihy| 7! e

�P̂

2
/(2µ0)



Asymptotic series in 
mass parameter

Operator Orderings http://arxiv.org/pdf/math-ph/0506007v1.pdf  (Suzuki)

Symmetric ‘Strang’ splitting 
of Density Matrix

No even-order contributions -
first non-trivial contribution at 
3rd order

Typical BCH

Kinetic + Potential Energies

First non-trivial contribution

Dephased Density Matrix: thermal state of Abstract Hamiltonian 

Strang



New Operator Form for QFI

Write mixed state in exponential form, and evolve via parameter 

Sylvester and Schrodinger equations

using algebraic properties of ‘inner derivation’             , L is a  series of nested commutators

Using identity

[H, •]



Operator Method for Phase Diffusion 

Combining Two Asymptotic Operator Series to 3rd Order:

Fisher Information for Unitary Shift by

Suzuki-Trotter-Strang

After some very careful book-keeping…

Mass parameter
….Semi-Classical asymptotic expansion in mass parameter, e.g. 

1.

2.



Idea to combine phase noise     + loss    

Probability to lose k photons from n in lower mode

Dephasing result respects total particle 
number, e.g. n-k, if k photons lost.

Gaussian Approximation

Replace in dephasing expression for 1/F and integrate over k lost photons



Quantum Fisher Information as Classical Action

Dephasing case just worked out

µ0 7! µ(x)


