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Abstract

1. Mathematical aspects and challenges in the atomic clock
theory

2. Analytical bounds on long time stability of atomic clocks



How well we can measure time?

Classical mechanics: There is no obstacle to built a perfect clock
within the theory.

Quantum mechanics: Perfect clock requires infinite mass and
infinite power.



Atomic clock model: variables and notation

I ω0 – Quantum reference frequency

I ω(t) – Clocks LO frequency; The relative frequency error is

y(t) =
ω(t)− ω0

ω0

I tclock – Clock time;

tclock =
1

ω0

∫ t

0
ω(s)ds; tclock − t =

∫ t

0
y(s)ds

I yLO(t) – LO frequency in absence of a feedback

I ŷ – Feedback upon which

y(t) → y(t)− ŷ



Atomic clock specifications

I Free running LO noise yLO(t)

I Frequency reference; Initial state ρ; Interrogation dynamics;

I Feedback protocol



Local oscillator model

Principle mathematical properties:

I Markov property. The LO noise yLO(t) is a Markov process,
yLO(t) = K (t, 0)(yLO(0)).

I Martingale property. The LO frequency ωLO(t) has no
knowledge about ω0 , e.g. E[yLO(t)|yLO(0)] = yLO(0).

Adding two further reasonable properties, Autonomy and
continuity we get

Example (Canonical example of LO-noise)

yLO(t) =
√

2DWt ,

where Wt is the Wiener process.



Feedback model

Interrogation: In each time window jT , (j + 1)T the initial
quantum state of the reference evolves as

ρ → ρ(ȳj); ȳj =
1

T

∫ jT

j−1T
y(s)ds.

Feedback: ŷj is obtained by measurement Π(ŷ) on the state, i.e.

Prob(ŷj = ŷ) = Tr(ρ(ȳj)Π(ŷ)).

We denote FT (ϕ) the QFI of the family ρ(ϕ) at a point ϕ.

Example (Hamiltonian model)

ρ(ȳj) = exp(−iHT ȳj)ρ exp(iHT ȳj), F = 4T 2 < ∆E 2 >ρ



Full, closed loop model

nT (n + 1)T

yn yn(t) yn+1

Put yn(t) := y(t + nT ), t ∈ [0, T ), yn := yn(0).

The evolution equations of the model are

yn(t) = Ktyn, t ∈ [0,T )

yn+1 = KT yn − ŷn.

Given specifications ρ(ϕ), Π(ŷ), Kt , T we determine y(t).



Measures of instability

I Allan Variance: σ2(τ) := 1
2E[
(
1
τ

∫ 2τ
τ y(s)ds − 1

τ

∫ τ
0 y(s)ds

)2
]

For atomic clocks σ2(τ) ∼ Dτ−1 as τ →∞.

I Clock Time Variance: E[(tclock − t)2]

For large t, t2σ2(t) ∼ E[(tclock − t)2] ∼ Dt.



Unbiased clock

Unbiased clock is accurate in average, E[tclock ] = t.

⇓

E[y(s)] = 0 provided E[y(0)] = 0.

(variational argument) ⇓ (variational argument)

For some ζ ∈ R, E[y − ŷ |y ] = ζy ; (1− ζ) is the gain in the
feedback loop.

Definition (ζ-unbiased clock)

The clock is ζ-unbiased if the estimation procedure is ζ-biased
with |ζ| < 1.



Stationary states - properties

Theorem
Suppose that {ρT (ϕ), Π(ŷ), KT} is an ζ-unbiased clock and let
FT (ϕ) be a Fisher inf. assoc. to the family ρT (ϕ). Then for the
associated clock time variance we have a bound

lim
t→∞

E[(tclock − t)2]

t
≥ T

1

FT
+ Tσ2LO(T )

β

(1− ζ)2
,

where β is a constant associated to the noise and

σ2LO(T ) := E[(ȳn − yn)2].

Above 1/FT is a shorthand for E[1/FT (ȳn)].



Unitary model

For a unitary evolution FT = 4T 2(∆E )2, and a phenomenological
dependence σ2LO(T ) = DTα we can find optimal T in the latter
bound and we get

lim
t→∞

E[(tclock − t)2]

t
≥ C

(
1

4∆2E

)α+1
α+2

,

with constant

C =
α + 2

α + 1

(
1
2(α + 2)D(α + 1)2

(1− ζ)2

) 1
α+2

.

α = 0 is 1/f noise; α = 1 is Wiener process.



Cramer-Rao bound

For a given prob. dist. q(ϕ) we introduce an average QFI,

F̃ =

∫
F (ϕ)

q̃(ϕ)2

q(ϕ)
dϕ, q̃(ϕ) =

∫∞
ϕ sq(s)ds

σ(q)2
.

Theorem
Let ϕ̂ be an estimation of a ran. var. ϕ (of zero mean) with a prior
prob. dist. q(ϕ). Then it holds

E[(ϕ− ϕ̂)2] ≥ 1

F̃ + E[ϕ2]−1
.



Mathematical Challenges

I Phase-Frequency ambiguity (entanglement)

I Asymptotic normality

I Mixing times

I Entropy production
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