Fundamental bounds on the clock time variance of atomic clocks

Martin Fraas

Recent Advances in Quantum Metrology, Warsaw, March 2016

http://arxiv.org/pdf/1303.6083.pdf

Abstract

1. Mathematical aspects and challenges in the atomic clock theory

2. Analytical bounds on long time stability of atomic clocks

(ロ)、(型)、(E)、(E)、 E) の(の)

How well we can measure time?

Classical mechanics: There is no obstacle to built a perfect clock within the theory.

Quantum mechanics: Perfect clock requires infinite mass and infinite power.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Atomic clock model: variables and notation

- ω_0 Quantum reference frequency
- $\omega(t)$ Clocks LO frequency; The relative frequency error is

$$y(t) = rac{\omega(t) - \omega_0}{\omega_0}$$

t_{clock} – Clock time;

$$t_{clock} = rac{1}{\omega_0} \int_0^t \omega(s) \mathrm{d}s; \quad t_{clock} - t = \int_0^t y(s) \mathrm{d}s$$

• $y_{LO}(t) - LO$ frequency in absence of a feedback

• \hat{y} – Feedback upon which

$$y(t) \rightarrow y(t) - \hat{y}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Atomic clock specifications

Free running LO noise $y_{LO}(t)$

Frequency reference; Initial state ρ ; Interrogation dynamics;

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Feedback protocol

Local oscillator model

Principle mathematical properties:

- Markov property. The LO noise $y_{LO}(t)$ is a Markov process, $y_{LO}(t) = K(t, 0)(y_{LO}(0)).$
- Martingale property. The LO frequency ω_{LO}(t) has no knowledge about ω₀, e.g. E[y_{LO}(t)|y_{LO}(0)] = y_{LO}(0).

Adding two further reasonable properties, Autonomy and continuity we get

Example (Canonical example of LO-noise)

$$y_{LO}(t) = \sqrt{2D}W_t,$$

where W_t is the Wiener process.

Feedback model

Interrogation: In each time window jT, (j + 1)T the initial quantum state of the reference evolves as

$$ho \quad o \quad
ho(ar{y}_j); \quad ar{y}_j = rac{1}{T} \int_{j-1T}^{jT} y(s) \mathrm{d}s.$$

Feedback: \hat{y}_j is obtained by measurement $\Pi(\hat{y})$ on the state, i.e.

$$Prob(\hat{y}_j = \hat{y}) = Tr(\rho(\bar{y}_j)\Pi(\hat{y})).$$

We denote $F_T(\varphi)$ the QFI of the family $\rho(\varphi)$ at a point φ .

Example (Hamiltonian model) $\rho(\bar{y}_j) = \exp(-iHT\bar{y}_j)\rho\exp(iHT\bar{y}_j), \quad F = 4T^2 < \Delta E^2 >_{\rho}$

Full, closed loop model

Put $y_n(t) := y(t + nT), \quad t \in [0, T), \quad y_n := y_n(0).$

The evolution equations of the model are

 $y_n(t) = K_t y_n, \quad t \in [0, T)$ $y_{n+1} = K_T y_n - \hat{y}_n.$

Given specifications $\rho(\varphi)$, $\Pi(\hat{y})$, K_t , T we determine y(t).

Measures of instability

• Allan Variance: $\sigma^2(\tau) := \frac{1}{2} \mathbb{E} \left[\left(\frac{1}{\tau} \int_{\tau}^{2\tau} y(s) ds - \frac{1}{\tau} \int_{0}^{\tau} y(s) ds \right)^2 \right]$ For atomic clocks $\sigma^2(\tau) \sim D\tau^{-1}$ as $\tau \to \infty$.

- Clock Time Variance: $\mathbb{E}[(t_{clock} t)^2]$
 - For large t, $t^2\sigma^2(t) \sim \mathbb{E}[(t_{clock} t)^2] \sim Dt$.

Unbiased clock

Unbiased clock is accurate in average, $\mathbb{E}[t_{clock}] = t$.

 $\mathbb{E}[y(s)] = 0$ provided $\mathbb{E}[y(0)] = 0.$

 \Downarrow (variational argument)

For some $\zeta \in \mathbb{R}$, $\mathbb{E}[y - \hat{y}|y] = \zeta y$; $(1 - \zeta)$ is the gain in the feedback loop.

1

Definition (ζ -unbiased clock)

The clock is $\zeta\text{-unbiased}$ if the estimation procedure is $\zeta\text{-biased}$ with $|\zeta|<1.$

Stationary states - properties

Theorem

Suppose that $\{\rho_T(\varphi), \Pi(\hat{y}), K_T\}$ is an ζ -unbiased clock and let $F_T(\varphi)$ be a Fisher inf. assoc. to the family $\rho_T(\varphi)$. Then for the associated clock time variance we have a bound

$$\lim_{t\to\infty}\frac{\mathbb{E}[(t_{clock}-t)^2]}{t}\geq T\frac{1}{F_T}+T\sigma_{LO}^2(T)\frac{\beta}{(1-\zeta)^2},$$

where β is a constant associated to the noise and

$$\sigma_{LO}^2(T) := \mathbb{E}[(\bar{y}_n - y_n)^2].$$

Above $1/F_T$ is a shorthand for $\mathbb{E}[1/F_T(\bar{y}_n)]$.

Unitary model

For a unitary evolution $F_T = 4T^2(\Delta E)^2$, and a phenomenological dependence $\sigma_{LO}^2(T) = DT^{\alpha}$ we can find optimal T in the latter bound and we get

$$\lim_{t\to\infty}\frac{\mathbb{E}[(t_{clock}-t)^2]}{t}\geq C\left(\frac{1}{4\Delta^2 E}\right)^{\frac{\alpha+1}{\alpha+2}},$$

with constant

$$C = \frac{\alpha+2}{\alpha+1} \left(\frac{\frac{1}{2}(\alpha+2)D(\alpha+1)^2}{(1-\zeta)^2} \right)^{\frac{1}{\alpha+2}}$$

 $\alpha = 0$ is 1/f noise; $\alpha = 1$ is Wiener process.

Cramer-Rao bound

For a given prob. dist. $q(\varphi)$ we introduce an average QFI,

$$ilde{F} = \int F(arphi) rac{ ilde{q}(arphi)^2}{q(arphi)} \mathrm{d}arphi, \quad ilde{q}(arphi) = rac{\int_arphi^\infty s q(s) \mathrm{d}s}{\sigma(q)^2}.$$

Theorem

Let $\hat{\varphi}$ be an estimation of a ran. var. φ (of zero mean) with a prior prob. dist. $q(\varphi)$. Then it holds

$$\mathbb{E}[(arphi - \hat{arphi})^2] \geq rac{1}{ ilde{\mathcal{F}} + \mathbb{E}[arphi^2]^{-1}}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Mathematical Challenges

Phase-Frequency ambiguity (entanglement)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Asymptotic normality
- Mixing times
- Entropy production

Thank you for your attention!