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Abstract

1. Mathematical aspects and challenges in the atomic clock
theory

2. Analytical bounds on long time stability of atomic clocks



How well we can measure time?

Classical mechanics: There is no obstacle to built a perfect clock
within the theory.

Quantum mechanics: Perfect clock requires infinite mass and
infinite power.



Atomic clock model: variables and notation

» wo — Quantum reference frequency

» w(t) — Clocks LO frequency; The relative frequency error is

y(t) = w(t) —wo
wo

v

teiock — Clock time;

1 t t
telock = / W(S)dS; telock — t = / Y(S)ds
wo Jo 0

v

yro(t) — LO frequency in absence of a feedback

v

y — Feedback upon which

(@) — y()-y



Atomic clock specifications

» Free running LO noise y; o(t)

» Frequency reference; Initial state p; Interrogation dynamics;

» Feedback protocol



Local oscillator model

Principle mathematical properties:

» Markov property. The LO noise y;o(t) is a Markov process,
yro(t) = K(t,0)(yLo(0)).
» Martingale property. The LO frequency w;o(t) has no

knowledge about wp , e.g. Elyro(t)|yLo(0)] = yLo(0).

Adding two further reasonable properties, Autonomy and
continuity we get

Example (Canonical example of LO-noise)

}/LO(t) =V 2DWt7

where W; is the Wiener process.



Feedback model

Interrogation: In each time window jT,(j + 1) T the initial
quantum state of the reference evolves as

S
p — o) ¥i= T/ y(s)ds.
j-1T
Feedback: y; is obtained by measurement I1(y) on the state, i.e.
Prob(y; = ) = Tr(p(y;)N(¥))-
We denote Fr(¢) the QFI of the family p(¢) at a point .

Example (Hamiltonian model)
p(¥j) = exp(—iHTy;)pexp(iHTy;), F=4T? <AE? >,



Full, closed loop model

nT (n+1)T
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Yn o yn(t) Y1

Put yo(t) :=y(t+nT), t€[0, T), yn:=yn(0).
The evolution equations of the model are

y,,(t) = Kiyn, t€ [07 T)
Yn+1 = K1¥n — Vn.

Given specifications p(¢), MN(y), Kt, T we determine y(t).



Measures of instability

2 T Jr

» Allan Variance: 0%(7) := 11[“?1[(l T y(s)ds — X 2 Jo (

1

For atomic clocks 0?(7) ~ D71 as 7 — oo,

» Clock Time Variance: E[(tcjock — t)?]

For large t, t202(t) ~ E[(teock — t)?] ~ Dt.



Unbiased clock

Unbiased clock is accurate in average, E[tcock] = t.

4
E[y(s)] =0 provided E[y(0)] =0.

|} (variational argument)
For some ¢ € R, E[y — 7|y] = Cy; (1 — () is the gain in the

feedback loop.

Definition ((-unbiased clock)

The clock is (-unbiased if the estimation procedure is (-biased
with |¢| < 1.



Stationary states - properties

Theorem

Suppose that {pt(p), N(y), KT} is an (-unbiased clock and let
Fr(p) be a Fisher inf. assoc. to the family pt(yp). Then for the
associated clock time variance we have a bound

. IE[(1--clock - t)2] 1
Jim SRS > T To}o(T)

(1-¢)*
where [ is a constant associated to the noise and
oio(T) = El(7a — ya)’]
Lo : Yn—=Yn) |-

Above 1/Fr is a shorthand for E[1/F+(y,)].



Unitary model

For a unitary evolution Fr = 4T2(AE)?, and a phenomenological
dependence 07, (T) = DT® we can find optimal T in the latter
bound and we get

-

[e3

E[(tdock_t)z]zc( 1 >a+

4N2E

N
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t—o00 t

)

with constant

1

_a+2 (é(a—i—Z)D(a—l—l)z)“”

Ca+l (1-¢)?

a =0is 1/f noise; « = 1 is Wiener process.



Cramer-Rao bound

For a given prob. dist. g(¢) we introduce an average QFI,

- ()2 Lo f:o sq(s)ds
F/F((p) a(g) ¥ ale) = (G

Theorem
Let ¢ be an estimation of a ran. var.  (of zero mean) with a prior
prob. dist. q(v). Then it holds

a2 1
E[(‘P“P)]Zmo



Mathematical Challenges

v

Phase-Frequency ambiguity (entanglement)

v

Asymptotic normality

v

Mixing times

v

Entropy production
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