The Fisher Information Matrix as a tool in QIT

Otfried Gühne
S. Altenburg, G. Tóth, S. Wölk

Department Physik, Universität Siegen

Overview

- Facts about entanglement
- Covariance matrices and entanglement
- The Fisher-Information and entanglement

Some facts about entanglement

What is entanglement?

Alice and Bob share a quantum state $|\psi\rangle$.

What is entanglement?

Alice and Bob share a quantum state $|\psi\rangle$.

A pure state $|\psi\rangle$ is separable iff it is a product state:

$$
|\psi\rangle=|a\rangle_{A}|b\rangle_{B}=|a, b\rangle .
$$

Otherwise it is called entangled.

What is entanglement?

Alice and Bob share a quantum state $|\psi\rangle$.

A pure state $|\psi\rangle$ is separable iff it is a product state:

$$
|\psi\rangle=|a\rangle_{A}|b\rangle_{B}=|a, b\rangle .
$$

Otherwise it is called entangled.
Mixed states: Ask for convex combinations. ϱ is separable iff

$$
\varrho=\sum_{i} p_{i}\left|a_{i}\right\rangle\left\langle a_{i}\right| \otimes\left|b_{i}\right\rangle\left\langle b_{i}\right|, \quad \text { mit } \quad p_{i} \geq 0, \quad \sum_{i} p_{i}=1
$$

Interpretation: Entanglement cannot be generated by local operations and classical communication.
R. Werner, PRA 40, 4277 (1989).

The separability problem

Open question
Given a state ϱ is it entangled or not?

The separability problem

Open question
Given a state ϱ is it entangled or not?

Geometrical picture
The set of separable states is a convex set.
separable
entangled

The PPT criterion

Are there simple criteria to prove entanglement?

The PPT criterion

Are there simple criteria to prove entanglement?

Transposition and partial transposition

- Transposition: The usual transposition $X \mapsto X^{\top}$ does not change the eigenvalues of the matrix X.
- For a product space on can consider the partial transposition: If $X=A \otimes B$:

$$
X^{T_{B}}=A \otimes B^{T}
$$

The PPT criterion

Are there simple criteria to prove entanglement?

Transposition and partial transposition

- Transposition: The usual transposition $X \mapsto X^{\top}$ does not change the eigenvalues of the matrix X.
- For a product space on can consider the partial transposition: If $X=A \otimes B:$

$$
X^{T_{B}}=A \otimes B^{T}
$$

Partial transposition and separability

Theorem. For a separable state, the partial transposition has no negative eigenvalues. (" ϱ is PPT" oder $\varrho^{T_{B}} \geq 0$).
Proof:

$$
\varrho_{\text {sep }}^{T_{B}}=\sum_{k} p_{k} \varrho_{A} \otimes \varrho_{B}^{T}=\sum_{k} p_{k} \varrho_{A} \otimes \varrho_{B} \geq 0 .
$$

The PPT criterion

Are there simple criteria to prove entanglement?

Transposition and partial transposition

- Transposition: The usual transposition $X \mapsto X^{\top}$ does not change the eigenvalues of the matrix X.
- For a product space on can consider the partial transposition: If $X=A \otimes B:$

$$
X^{T_{B}}=A \otimes B^{T}
$$

Partial transposition and separability

Theorem. For a separable state, the partial transposition has no negative eigenvalues. (" ϱ is PPT" oder $\varrho^{T_{B}} \geq 0$).
Proof:

$$
\varrho_{\text {sep }}^{T_{B}}=\sum_{k} p_{k} \varrho_{A} \otimes \varrho_{B}^{T}=\sum_{k} p_{k} \varrho_{A} \otimes \tilde{\varrho}_{B} \geq 0 .
$$

For two qubits: ϱ is PPT $\Leftrightarrow \varrho$ is separable. In general: \nRightarrow

Geometrical view

separable

The computable cross norm (CCNR) criterion

Schmidt decomposition (SD)
We write ϱ in the SD in operator space:

$$
\varrho=\sum_{k} \lambda_{k} G_{k}^{A} \otimes G_{k}^{B},
$$

where $\lambda_{k} \geq 0$ and

$$
\operatorname{Tr}\left(G_{k}^{A} G_{l}^{A}\right)=\operatorname{Tr}\left(G_{k}^{B} G_{l}^{B}\right)=\delta_{k l} .
$$

The computable cross norm (CCNR) criterion

Schmidt decomposition (SD)

We write ϱ in the SD in operator space:

$$
\varrho=\sum_{k} \lambda_{k} G_{k}^{A} \otimes G_{k}^{B},
$$

where $\lambda_{k} \geq 0$ and

$$
\operatorname{Tr}\left(G_{k}^{A} G_{l}^{A}\right)=\operatorname{Tr}\left(G_{k}^{B} G_{l}^{B}\right)=\delta_{k l} .
$$

The CCNR criterion states that

$$
\varrho \text { is separable } \Rightarrow \sum_{k} \lambda_{k} \leq 1 .
$$

Oliver Rudolph, quant-ph/0202121.

The computable cross norm (CCNR) criterion

Schmidt decomposition (SD)

We write ϱ in the SD in operator space:

$$
\varrho=\sum_{k} \lambda_{k} G_{k}^{A} \otimes G_{k}^{B},
$$

where $\lambda_{k} \geq 0$ and

$$
\operatorname{Tr}\left(G_{k}^{A} G_{l}^{A}\right)=\operatorname{Tr}\left(G_{k}^{B} G_{l}^{B}\right)=\delta_{k l} .
$$

The CCNR criterion states that

$$
\varrho \text { is separable } \Rightarrow \sum_{k} \lambda_{k} \leq 1
$$

Oliver Rudolph, quant-ph/0202121.

Example

The singlet can be written as
$\left|\psi^{-}\right\rangle\left\langle\psi^{-}\right|=\frac{1}{2}\left[\frac{\mathbb{1}}{\sqrt{2}} \otimes \frac{\mathbb{1}}{\sqrt{2}}-\frac{X}{\sqrt{2}} \otimes\right.$
$\left.\otimes \frac{X}{\sqrt{2}}-\frac{Y}{\sqrt{2}} \otimes \frac{Y}{\sqrt{2}}-\frac{Z}{\sqrt{2}} \otimes \frac{Z}{\sqrt{2}}\right]$
Hence $\sum_{k} \lambda_{k}=2 \Rightarrow$ The state is entangled!

The CCNR criterion is also often called the realignment criterion and can detect bound entangled states.
K. Chen, L.-A. Wu, QIC 3, 193 (2003)

Geometrical view

The PPT criterion and the CCNR criterion are complementary.

Other criteria

There are many other separability criteria on the market:

- Reduction criterion: This is weaker than PPT.

$$
\varrho \text { is separable } \Rightarrow \mathbb{1} \otimes \varrho_{A}-\varrho \geq 0 .
$$

- Majorization criterion: This is weaker than PPT.

$$
\varrho \text { is separable } \Rightarrow \vec{\lambda}\left(\varrho_{A}\right) \succ \vec{\lambda}(\varrho) .
$$

- Other positive maps and symmetric extensions.

Other criteria

There are many other separability criteria on the market:

- Reduction criterion: This is weaker than PPT.

$$
\varrho \text { is separable } \Rightarrow \mathbb{1} \otimes \varrho_{A}-\varrho \geq 0 .
$$

- Majorization criterion: This is weaker than PPT.

$$
\varrho \text { is separable } \Rightarrow \vec{\lambda}\left(\varrho_{A}\right) \succ \vec{\lambda}(\varrho) .
$$

- Other positive maps and symmetric extensions.
- Criteria using the Bloch representation of density matrices.
J.I. de Vicente, QIC 7, 624 (2007).
- Extensions of the CCNR criterion

```
Zhang }\mp@subsup{}{}{\otimes3}\mathrm{ and Guo, PRA 76, 012334 (2007), PRA 77, 060301(R) (2008).
```

- Local uncertainty relations

The last three are interesting, as they are independent of PPT ...

Covariance matrices and entanglement

Covariance matrices in quantum optics

- Gaussian states are described by covariance matrices of X and P.
- Squeezed states are useful for quantum metrology (GEO600, 2018)

Local uncertainty relations (LURs)

LURs

Given observables A_{i} for Alice and B_{i} for Bob, with

$$
\sum_{k} \Delta^{2}\left(A_{k}\right) \geq C_{A}, \quad \sum_{k} \Delta^{2}\left(B_{k}\right) \geq C_{B}
$$

where $\Delta^{2}(A)=\left\langle A^{2}\right\rangle-\langle A\rangle^{2}$ denotes the variance.
Then for separable states

$$
\sum_{k} \Delta^{2}\left(A_{k} \otimes \mathbb{1}+\mathbb{1} \otimes B_{k}\right) \geq C_{A}+C_{B}
$$

H. Hofmann, S. Takeuchi, PRA 68, 032103 (2003).

Local uncertainty relations (LURs)

LURs

Given observables A_{i} for Alice and B_{i} for Bob, with

$$
\sum_{k} \Delta^{2}\left(A_{k}\right) \geq C_{A}, \quad \sum_{k} \Delta^{2}\left(B_{k}\right) \geq C_{B}
$$

where $\Delta^{2}(A)=\left\langle A^{2}\right\rangle-\langle A\rangle^{2}$ denotes the variance.
Then for separable states

$$
\sum_{k} \Delta^{2}\left(A_{k} \otimes \mathbb{1}+\mathbb{1} \otimes B_{k}\right) \geq C_{A}+C_{B}
$$

H. Hofmann, S. Takeuchi, PRA 68, 032103 (2003).

Proof \& Interpretation

- For $\varrho=\varrho_{A} \otimes \varrho_{B}$ we have $\Delta^{2}\left(A_{k} \otimes \mathbb{1}+\mathbb{1} \otimes B_{k}\right)_{\varrho}=\Delta^{2}\left(A_{k}\right)_{\varrho_{A}}+$ $+\Delta^{2}\left(B_{k}\right)_{\varrho_{B}}$.
- Separable states inherit the uncertainty relations from each party.

Example for the LURs

Take the A_{i} and B_{i} as Pauli matrices: $\left\{A_{i}\right\}=\left\{B_{i}\right\}=\left\{\sigma_{x}, \sigma_{y}, \sigma_{z}\right\}=1$ $\{X, Y, Z\}$. Then:

$$
\sum_{k} \Delta^{2}\left(A_{k}\right) \geq 2, \quad \sum_{k} \Delta^{2}\left(B_{k}\right) \geq 2
$$

Hence for separable states:

$$
\sum_{k} \Delta^{2}\left(\sigma_{k} \otimes \mathbb{1}+\mathbb{1} \otimes \sigma_{k}\right) \geq 4
$$

But the singlet $\left|\psi^{-}\right\rangle$is an eigenstate of $\left(\sigma_{k} \otimes \mathbb{1}+\mathbb{1} \otimes \sigma_{k}\right)$.
\Rightarrow The singlet is detected.

A surprising fact

The LUR derived above for the Pauli matrices requires for separable states

$$
\mathcal{F}(\varrho)=\langle\mathbb{1} \otimes \mathbb{1}+X \otimes X+Y \otimes Y+Z \otimes Z\rangle-\frac{1}{2} \sum_{k=x, y, z}\left\langle\sigma_{k} \otimes \mathbb{1}+\mathbb{1} \otimes \sigma_{k}\right\rangle^{2} \geq 0 .
$$

A surprising fact

The LUR derived above for the Pauli matrices requires for separable states

$$
\mathcal{F}(\varrho)=\langle\mathbb{1} \otimes \mathbb{1}+X \otimes X+Y \otimes Y+Z \otimes Z\rangle-\frac{1}{2} \sum_{k=x, y, z}\left\langle\sigma_{k} \otimes \mathbb{1}+\mathbb{1} \otimes \sigma_{k}\right\rangle^{2} \geq 0 .
$$

The linear part is known to be an optimal entanglement witness:

$$
\mathcal{F}(\varrho)=4 \cdot\langle\mathcal{W}\rangle-\frac{1}{2} \sum_{k=x, y, z}\left\langle\sigma_{k} \otimes \mathbb{1}+\mathbb{1} \otimes \sigma_{k}\right\rangle^{2} \geq 0
$$

\Rightarrow This special witness can be improved by a nonlinear witness!

Geometrical view

LURs can lead to nonlinear entanglement witnesses!

Covariance matrices: A systematic approach

Definition

Let M_{k} be some observables. The covariance matrix (CM) γ has the entries

$$
\gamma_{i j}=\frac{\left\langle M_{i} M_{j}\right\rangle+\left\langle M_{j} M_{i}\right\rangle}{2}-\left\langle M_{i}\right\rangle\left\langle M_{j}\right\rangle .
$$

γ is real, symmetric and positive semidefinite.
Note. Taking $M_{1}=X, M_{2}=P$ gives the well known covariance matrices for continuous variables / Gaussian states.

Covariance matrices: A systematic approach

Definition

Let M_{k} be some observables. The covariance matrix (CM) γ has the entries

$$
\gamma_{i j}=\frac{\left\langle M_{i} M_{j}\right\rangle+\left\langle M_{j} M_{i}\right\rangle}{2}-\left\langle M_{i}\right\rangle\left\langle M_{j}\right\rangle .
$$

γ is real, symmetric and positive semidefinite.
Note. Taking $M_{1}=X, M_{2}=P$ gives the well known covariance matrices for continuous variables / Gaussian states.

Concavity property.
If $\varrho=\sum_{k} p_{k} \varrho_{k}$ then

$$
\gamma(\varrho) \geq \sum_{k} p_{k} \gamma\left(\varrho_{k}\right) .
$$

Interpretation. Variances increase under mixing the states.

Covariance matrices

Bipartite systems.
For them we may take $\left\{M_{k}\right\}=\left\{A_{k} \otimes \mathbb{1}, \mathbb{1} \otimes B_{k}\right\}$ where A_{k} and B_{k} are a basis of the operator space (e.g. Pauli matrices for qubits). Then

$$
\gamma=\left[\begin{array}{cc}
A & C \\
C^{T} & B
\end{array}\right],
$$

where $A=\gamma\left(\varrho_{A},\left\{A_{k}\right\}\right), B=\gamma\left(\varrho_{B},\left\{B_{k}\right\}\right)$ and $C_{i j}=\left\langle A_{i} \otimes B_{j}\right\rangle-\left\langle A_{i}\right\rangle\left\langle B_{j}\right\rangle$.

Covariance matrices

Bipartite systems.

For them we may take $\left\{M_{k}\right\}=\left\{A_{k} \otimes \mathbb{1}, \mathbb{1} \otimes B_{k}\right\}$ where A_{k} and B_{k} are a basis of the operator space (e.g. Pauli matrices for qubits). Then

$$
\gamma=\left[\begin{array}{cc}
A & C \\
C^{T} & B
\end{array}\right],
$$

where $A=\gamma\left(\varrho_{A},\left\{A_{k}\right\}\right), B=\gamma\left(\varrho_{B},\left\{B_{k}\right\}\right)$ and $C_{i j}=\left\langle A_{i} \otimes B_{j}\right\rangle-\left\langle A_{i}\right\rangle\left\langle B_{j}\right\rangle$.

Product states.

If $\varrho=\varrho_{A} \otimes \varrho_{B}$ then $C=0$, hence

$$
\gamma\left(\varrho_{A} \otimes \varrho_{B}\right)=\left[\begin{array}{ll}
A & 0 \\
0 & B
\end{array}\right] .
$$

The covariance matrix criterion (CMC)

CMC
If $\varrho=\sum_{k} p_{k}\left|a_{k}\right\rangle\left\langle a_{k}\right| \otimes\left|b_{k}\right\rangle\left\langle b_{k}\right|$ is separable, then there exists

$$
\kappa_{A}=\sum_{k} p_{k} \gamma\left(\left|a_{k}\right\rangle\left\langle a_{k}\right|\right) \text { and } \kappa_{B}=\sum_{k} p_{k} \gamma\left(\left|b_{k}\right\rangle\left\langle b_{k}\right|\right)
$$

such that

$$
\gamma(\varrho) \geq\left[\begin{array}{cc}
\kappa_{A} & 0 \\
0 & \kappa_{B}
\end{array}\right]=: \kappa_{A} \oplus \kappa_{B} .
$$

The covariance matrix criterion (CMC)

CMC

If $\varrho=\sum_{k} p_{k}\left|a_{k}\right\rangle\left\langle a_{k}\right| \otimes\left|b_{k}\right\rangle\left\langle b_{k}\right|$ is separable, then there exists

$$
\kappa_{A}=\sum_{k} p_{k} \gamma\left(\left|a_{k}\right\rangle\left\langle a_{k}\right|\right) \text { and } \kappa_{B}=\sum_{k} p_{k} \gamma\left(\left|b_{k}\right\rangle\left\langle b_{k}\right|\right)
$$

such that

$$
\gamma(\varrho) \geq\left[\begin{array}{cc}
\kappa_{A} & 0 \\
0 & \kappa_{B}
\end{array}\right]=: \kappa_{A} \oplus \kappa_{B}
$$

Remarks

- This is very similar to the criterion $\gamma \geq \gamma_{A} \oplus \gamma_{B}$ for Gaussian states. R. Werner, M. Wolf, PRL 86, 3658 (2001).
- How can we evaluate this criterion?
- For continuous variables we know that $\gamma_{A} \geq i J$ but $\kappa_{A} \geq$??

Tricks for the evaluation

One can use the following facts:

- One can prove that $\operatorname{Tr}\left(\kappa_{A}\right)=d_{A}-1\left(d_{A}\right.$ is Alice's dimension $)$.
- For 2×2 matrices we have:

$$
\left[\begin{array}{ll}
a & c \\
c & b
\end{array}\right] \geq 0 \quad \Rightarrow \quad a+b \geq 2|c|
$$

- More general:

$$
\left[\begin{array}{ll}
X & Z \\
Z & Y
\end{array}\right] \geq 0 \quad \Rightarrow \quad \operatorname{Tr}(X)+\operatorname{Tr}(Y) \geq 2|\operatorname{Tr}(Z)|
$$

- Another trick: For any unitary invariant norm (e.g. trace norm)

$$
\left[\begin{array}{ll}
X & Z \\
Z & Y
\end{array}\right] \geq 0 \Rightarrow\left[\begin{array}{ll}
\|X\| & \|Z\| \\
\|Z\| & \|Y\|
\end{array}\right] \geq 0
$$

The computable cross norm (CCNR) criterion

Schmidt decomposition (SD)
We write ϱ in the SD in operator space:

$$
\varrho=\sum_{k} \lambda_{k} G_{k}^{A} \otimes G_{k}^{B}
$$

where $\lambda_{k} \geq 0$ and

$$
\operatorname{Tr}\left(G_{k}^{A} G_{l}^{A}\right)=\operatorname{Tr}\left(G_{k}^{B} G_{l}^{B}\right)=\delta_{k l}
$$

The CCNR criterion states that ϱ is separable $\Rightarrow \sum_{k} \lambda_{k} \leq 1$.

Oliver Rudolph, quant-ph/0202121.

Example

The singlet can be written as
$\left|\psi^{-}\right\rangle\left\langle\psi^{-}\right|=\frac{1}{2}\left[\frac{\mathbb{1}}{\sqrt{2}} \otimes \frac{\mathbb{1}}{\sqrt{2}}-\frac{X}{\sqrt{2}} \otimes\right.$
$\left.\otimes \frac{X}{\sqrt{2}}-\frac{Y}{\sqrt{2}} \otimes \frac{Y}{\sqrt{2}}-\frac{Z}{\sqrt{2}} \otimes \frac{Z}{\sqrt{2}}\right]$
Hence $\sum_{k} \lambda_{k}=2 \Rightarrow$ The state is entangled!

The CCNR criterion is also often called the realignment criterion and can detect bound entangled states.
K. Chen, L.-A. Wu, QIC 3, 193 (2003)

The CMC improves the CCNR

Idea. Take the observables from the SD for the CMC!

The CMC improves the CCNR

Idea. Take the observables from the SD for the CMC!

Result
Define $g_{k}^{A}=\operatorname{Tr}\left(G_{k}^{A}\right)$ and $g_{k}^{B}=\operatorname{Tr}\left(G_{k}^{B}\right)$. Then for separable states

$$
2 \sum_{k}\left|\lambda_{k}-\lambda_{k}^{2} g_{k}^{A} g_{k}^{B}\right| \leq 2-\sum_{k} \lambda_{k}^{2}\left[\left(g_{k}^{A}\right)^{2}+\left(g_{k}^{B}\right)^{2}\right] .
$$

The CMC improves the CCNR

Idea. Take the observables from the SD for the CMC!

Result

Define $g_{k}^{A}=\operatorname{Tr}\left(G_{k}^{A}\right)$ and $g_{k}^{B}=\operatorname{Tr}\left(G_{k}^{B}\right)$. Then for separable states

$$
2 \sum_{k}\left|\lambda_{k}-\lambda_{k}^{2} g_{k}^{A} g_{k}^{B}\right| \leq 2-\sum_{k} \lambda_{k}^{2}\left[\left(g_{k}^{A}\right)^{2}+\left(g_{k}^{B}\right)^{2}\right] .
$$

Note. This looks ugly, but can be simply computed. Further, $\sum_{k} \lambda_{k} \leq 1$ follows from it.
\Rightarrow The CMC is stronger than the CCNR criterion!

Local filters

Observation

Transformations of the type

$$
\varrho \mapsto \tilde{\varrho}=\left(F_{A} \otimes F_{B}\right) \varrho\left(F_{A} \otimes F_{B}\right)^{\dagger}
$$

preserve separability and entanglement. By this one can map ϱ to

$$
\tilde{\varrho}=\frac{1}{d_{A} d_{B}}\left[\mathbb{1}+\sum_{i=1}^{d_{A}^{2}-1} \xi_{i}\left(\tilde{G}_{i}^{A} \otimes \tilde{G}_{i}^{B}\right)\right]
$$

with traceless orthogonal observables $\tilde{G}_{i}^{A / B}$. The proof is constructive.
F. Verstraete, et al., PRA 68, 012103 (2003), J.M. Leinaas, et al., PRA 74, 012313 (2006).

Local filters

Observation

Transformations of the type

$$
\varrho \mapsto \tilde{\varrho}=\left(F_{A} \otimes F_{B}\right) \varrho\left(F_{A} \otimes F_{B}\right)^{\dagger}
$$

preserve separability and entanglement. By this one can map ϱ to

$$
\tilde{\varrho}=\frac{1}{d_{A} d_{B}}\left[\mathbb{1}+\sum_{i=1}^{d_{A}^{2}-1} \xi_{i}\left(\tilde{G}_{i}^{A} \otimes \tilde{G}_{i}^{B}\right)\right]
$$

with traceless orthogonal observables $\tilde{G}_{i}^{A / B}$. The proof is constructive.
F. Verstraete, et al., PRA 68, 012103 (2003), J.M. Leinaas, et al., PRA 74, 012313 (2006).

CMC under filtering
If ϱ in a $d \times d$ system is separable, then

$$
\sum_{i=1}^{d^{2}-1} \xi_{i} \leq d^{2}-d
$$

This criterion is necessary and sufficient for two qubits!

Further Results

- The CMC criterion is equivalent to the LURs.
- The CMC implies also other criteria besides CCNR: ZZZG, de Vicente ...
J.I. de Vicente, QIC 7, 624 (2007), Zhang ${ }^{\otimes 3}$, Guo, PRA 76, 012334 (2007), PRA 77, 060301(R) (2008).
- The CMC can be used to bound entanglement measures.
O. Gittsovich et al, PRA 81, 032333 (2010)
- Open Question: The relation to the work on complementary of correlations.

How strong are all these criteria?

Generate randomly chessboard states and check all the criteria.
D. Bruß and A. Peres, PRA 61, 030301 (2000).

Relation to other criteria

The Fisher information and entanglement

Some known relations: FI \& Entanglement

- Not all entangled states are useful for metrology
P. Hyllus et al., Phys. Rev. A 82, 012337 (2010)
- But: A high value of the Fisher information signals presence of multiparticle entanglement

G Toth, PRA 85, 022322 (2012), P. Hyllus et al., PRA 85, 022321 (2012)

- Recent methods allow to bound the Fisher information from few measurements, the techniques are similar to entanglement estimation.

Fisher information

For the unitary evolution

$$
U=\exp \{i \varphi H\}
$$

the Fisher information of the state $\varrho=\sum_{k} \lambda_{k}|k\rangle\langle k|$

$$
\left.F(\varrho, A)=2 \sum_{\alpha, \beta} \frac{\left(\lambda_{\alpha}-\lambda_{\beta}\right)^{2}}{\lambda_{\alpha}+\lambda_{\beta}}|\langle\alpha| A| \beta\right\rangle\left.\right|^{2}
$$

bounds the precision

$$
\Delta(\varphi) \geq \frac{1}{\sqrt{F}}
$$

Observation

Key observation

- The Fl is concave in the state
- The FI equals the variance for pure states.
G. Toth, D. Petz, PRA 87, 032324 (2013), S. Yu, arXiv:1302.5311

Question: Can we use this to derive entanglement criteria as we can do with covariance matrices?

Observation

Key observation

- The FI is concave in the state
- The FI equals the variance for pure states.
G. Toth, D. Petz, PRA 87, 032324 (2013), S. Yu, arXiv:1302.5311

Question: Can we use this to derive entanglement criteria as we can do with covariance matrices?

Advantages

- The criterion will directly detect useful entanglement.
- The techniques from the CMC criterion can be used, up to some sign flips.

The FIM

Consider observables M_{k} and the matrix

$$
F\left(\varrho, M_{k}\right)=2 \sum_{\alpha, \beta} \frac{\left(\lambda_{\alpha}-\lambda_{\beta}\right)^{2}}{\lambda_{\alpha}+\lambda_{\beta}}\langle\alpha| M_{i}|\beta\rangle\langle\beta| M_{j}|\alpha\rangle
$$

The diagonal entries are the FI from the M_{k}

The FIM

Consider observables M_{k} and the matrix

$$
F\left(\varrho, M_{k}\right)=2 \sum_{\alpha, \beta} \frac{\left(\lambda_{\alpha}-\lambda_{\beta}\right)^{2}}{\lambda_{\alpha}+\lambda_{\beta}}\langle\alpha| M_{i}|\beta\rangle\langle\beta| M_{j}|\alpha\rangle
$$

The diagonal entries are the FI from the M_{k}

Convexity property

From the convexity of the FI it follows that if $\varrho=\sum_{k} p_{k} \varrho_{k}$, then

$$
F(\varrho) \leq \sum_{k} p_{k} F\left(\varrho_{k}\right) .
$$

Interpretation. The FI decreases under mixing the states.

Properties of the FIM

- The FIM is a $d^{2} \times d^{2}$ matrix with nonnegative eigenvalues.
- For a pure state the rank is $r(F)=2(d-1)$, the rank can maximally be $r(F)=d^{2}-d$.
- The eigenvalues of the FIM are

$$
\eta_{k}=2 \frac{\left(\lambda_{\alpha}-\lambda_{\beta}\right)^{2}}{\lambda_{\alpha}+\lambda_{\beta}}
$$

- Unless $d=2$, the FIM determines ϱ completely.

First criterion

We take the $2 d^{2}$ observables $\left\{M_{k}\right\}=\left\{A_{k} \otimes \mathbb{1}, \mathbb{1} \otimes B_{k}\right\}$. Then

$$
F=\left[\begin{array}{cc}
A & C \\
C^{T} & B
\end{array}\right]
$$

where $A=F\left(\varrho_{A},\left\{A_{k}\right\}\right)$ and $B=F\left(\varrho_{B},\left\{B_{k}\right\}\right)$.

FMC

If ϱ is separable, then there exists

$$
f_{A}=\sum_{k} p_{k} F\left(\left|a_{k}\right\rangle\left\langle a_{k}\right|\right) \text { and } f_{B}=\sum_{k} p_{k} F\left(\left|b_{k}\right\rangle\left\langle b_{k}\right|\right)
$$

such that

$$
F(\varrho) \leq\left[\begin{array}{cc}
f_{A} & 0 \\
0 & f_{B}
\end{array}\right]=: f_{A} \oplus f_{B} .
$$

First criterion

FMC

If ϱ is separable, then there exists

$$
f_{A}=\sum_{k} p_{k} F\left(\left|a_{k}\right\rangle\left\langle a_{k}\right|\right) \text { and } f_{B}=\sum_{k} p_{k} F\left(\left|b_{k}\right\rangle\left\langle b_{k}\right|\right)
$$

such that

$$
F(\varrho) \leq\left[\begin{array}{cc}
f_{A} & 0 \\
0 & f_{B}
\end{array}\right]=: f_{A} \oplus f_{B} .
$$

Problem

For two-qubit states of the form

$$
\varrho=p\left|\psi^{-}\right\rangle\left\langle\psi^{-}\right|+(1-p) \frac{\mathbb{1}}{4}
$$

the f_{a}, f_{b} exist already for $p=0.66$
\Rightarrow The criterion cannot be very strong, regardless of the evaluation.

Second criterion

- We take the d^{4} observables $\left\{M_{i j}\right\}=\left\{A_{i} \otimes \mathbb{1}+\mathbb{1} \otimes B_{j}\right\}$. Again this matrix has a block structure.

Second criterion

- We take the d^{4} observables $\left\{M_{i j}\right\}=\left\{A_{i} \otimes \mathbb{1}+\mathbb{1} \otimes B_{j}\right\}$. Again this matrix has a block structure.
- For product states we find:

$$
F\left(M_{i j}\right)=|v\rangle\langle v| \otimes F\left(\varrho_{A}, A_{i}\right)+F\left(\varrho_{B}, B_{j}\right) \otimes|v\rangle\langle v|
$$

where $|v\rangle=(111, \ldots, 1)$.

Second criterion

- We take the d^{4} observables $\left\{M_{i j}\right\}=\left\{A_{i} \otimes \mathbb{1}+\mathbb{1} \otimes B_{j}\right\}$. Again this matrix has a block structure.
- For product states we find:

$$
F\left(M_{i j}\right)=|v\rangle\langle v| \otimes F\left(\varrho_{A}, A_{i}\right)+F\left(\varrho_{B}, B_{j}\right) \otimes|v\rangle\langle v|
$$

where $|v\rangle=(111, \ldots, 1)$.

- For two-qubit states of the form

$$
\varrho=p\left|\psi^{-}\right\rangle\left\langle\psi^{-}\right|+(1-p) \frac{\mathbb{1}}{4}
$$

the matrices exist only for $p<0.33$
\Rightarrow Looks better, but so far we have no direct evaluation criterion.

Conclusion

- Covariance matrices are powerful tools to characterize entanglement
- The CMC unifies several other known criteria
- The Fisher information matrix may also be a useful tool, but we have to work more.

```
Is there a relation to R. Augusiak, arXiv:1506.08837 ?
```

- O. Gühne, P. Hyllus, O. Gittsovich, J. Eisert Phys. Rev. Lett. 99, 130504 (2007)
- O. Gittsovich, O. Gühne, P. Hyllus, J. Eisert Phys. Rev. A 78, 052319 (2008)
- S. Altenburg et al., to appear soon

Thanks to ...

