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Some facts about entanglement



What is entanglement?

Alice and Bob share a quantum state |ψ〉.

A pure state |ψ〉 is separable iff it is a product state:

|ψ〉 = |a〉A|b〉B = |a, b〉.
Otherwise it is called entangled.

Mixed states: Ask for convex combinations. % is separable iff

% =
∑

i
pi |ai 〉〈ai | ⊗ |bi 〉〈bi |, mit pi ≥ 0,

∑
i
pi = 1.

Interpretation: Entanglement cannot be generated by local operations and
classical communication.
R. Werner, PRA 40, 4277 (1989).
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The separability problem

Open question

Given a state % is it entangled or not?

Geometrical picture

The set of separable states is a convex set.
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The PPT criterion

Are there simple criteria to prove entanglement?

Transposition and partial transposition

Transposition: The usual transposition X 7→ XT does not change
the eigenvalues of the matrix X .

For a product space on can consider the partial transposition: If
X = A⊗ B :

XTB = A⊗ BT

Partial transposition and separability

Theorem. For a separable state, the partial transposition has no negative
eigenvalues. (“% is PPT” oder %TB ≥ 0).
Proof:

%TB
sep =

∑
k
pk%A ⊗ %TB =

∑
k
pk%A ⊗ %̃B ≥ 0.

For two qubits: % is PPT ⇔ % is separable. In general: 6⇒

A. Peres, PRL 77, 1413 (1996)
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Geometrical view



The computable cross norm (CCNR) criterion

Schmidt decomposition (SD)

We write % in the SD in operator
space:

% =
∑
k

λkG
A
k ⊗ GB

k ,

where λk ≥ 0 and

Tr(GA
k G

A
l ) = Tr(GB

k GB
l ) = δkl .

The CCNR criterion states that

% is separable ⇒
∑
k

λk ≤ 1.

Oliver Rudolph, quant-ph/0202121.

Example

The singlet can be written as

|ψ−〉〈ψ−| =
1

2

[
1√
2
⊗ 1√

2
− X√

2
⊗

⊗ X√
2
− Y√

2
⊗ Y√

2
− Z√

2
⊗ Z√

2

]
.

Hence
∑

k λk = 2 ⇒ The state is
entangled!

The CCNR criterion is also of-
ten called the realignment criterion
and can detect bound entangled
states.
K. Chen, L.-A. Wu, QIC 3, 193 (2003)
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Geometrical view

The PPT criterion and the CCNR criterion are complementary.



Other criteria

There are many other separability criteria on the market:

Reduction criterion: This is weaker than PPT.

% is separable⇒ 1⊗ %A − % ≥ 0.

Majorization criterion: This is weaker than PPT.

% is separable⇒ ~λ(%A) � ~λ(%).

Other positive maps and symmetric extensions.

Criteria using the Bloch representation of density matrices.

J.I. de Vicente, QIC 7, 624 (2007).

Extensions of the CCNR criterion

Zhang⊗3 and Guo, PRA 76, 012334 (2007), PRA 77, 060301(R) (2008).

Local uncertainty relations

The last three are interesting, as they are independent of PPT ...
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Covariance matrices and entanglement



Covariance matrices in quantum optics

Gaussian states are described by covariance matrices of X and P.

Squeezed states are useful for quantum metrology (GEO600, 2018)



Local uncertainty relations (LURs)

LURs

Given observables Ai for Alice and Bi for Bob, with∑
k

∆2(Ak) ≥ CA,
∑
k

∆2(Bk) ≥ CB

where ∆2(A) = 〈A2〉 − 〈A〉2 denotes the variance.
Then for separable states∑

k

∆2(Ak ⊗ 1 + 1⊗ Bk) ≥ CA + CB

H. Hofmann, S. Takeuchi, PRA 68, 032103 (2003).

Proof & Interpretation

For % = %A ⊗ %B we have ∆2(Ak ⊗ 1 + 1⊗ Bk)% = ∆2(Ak)%A+
+∆2(Bk)%B .

Separable states inherit the uncertainty relations from each party.
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Example for the LURs

Take the Ai and Bi as Pauli matrices: {Ai} = {Bi} = {σx , σy , σz} =
{X ,Y ,Z}. Then: ∑

k

∆2(Ak) ≥ 2,
∑
k

∆2(Bk) ≥ 2

Hence for separable states:∑
k

∆2(σk ⊗ 1 + 1⊗ σk) ≥ 4

But the singlet |ψ−〉 is an eigenstate of (σk ⊗ 1 + 1⊗ σk).

⇒ The singlet is detected.



A surprising fact

The LUR derived above for the Pauli matrices requires for separable states

F(%) = 〈1⊗1+X ⊗X +Y ⊗Y +Z ⊗Z 〉− 1

2

∑
k=x,y ,z

〈σk ⊗1+1⊗σk〉2 ≥ 0.

The linear part is known to be an optimal entanglement witness:

F(%) = 4 · 〈W〉 − 1

2

∑
k=x,y ,z

〈σk ⊗ 1 + 1⊗ σk〉2 ≥ 0

⇒ This special witness can be improved by a nonlinear witness!
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Geometrical view

LURs can lead to nonlinear entanglement witnesses!



Covariance matrices: A systematic approach

Definition

Let Mk be some observables. The covariance matrix (CM) γ has the entries

γij =
〈MiMj〉+ 〈MjMi 〉

2
− 〈Mi 〉〈Mj〉.

γ is real, symmetric and positive semidefinite.

Note. Taking M1 = X , M2 = P gives the well known covariance matrices
for continuous variables / Gaussian states.

Concavity property.

If % =
∑

k pk%k then

γ(%) ≥
∑
k

pkγ(%k).

Interpretation. Variances increase under mixing the states.
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Covariance matrices

Bipartite systems.

For them we may take {Mk} = {Ak ⊗ 1, 1⊗ Bk} where Ak and Bk are a
basis of the operator space (e.g. Pauli matrices for qubits). Then

γ =

[
A C
CT B

]
,

where A = γ(%A, {Ak}), B = γ(%B , {Bk}) and Cij = 〈Ai ⊗Bj〉− 〈Ai 〉〈Bj〉.

Product states.

If % = %A ⊗ %B then C = 0, hence

γ(%A ⊗ %B) =

[
A 0
0 B

]
.



Covariance matrices

Bipartite systems.

For them we may take {Mk} = {Ak ⊗ 1, 1⊗ Bk} where Ak and Bk are a
basis of the operator space (e.g. Pauli matrices for qubits). Then

γ =

[
A C
CT B

]
,

where A = γ(%A, {Ak}), B = γ(%B , {Bk}) and Cij = 〈Ai ⊗Bj〉− 〈Ai 〉〈Bj〉.

Product states.

If % = %A ⊗ %B then C = 0, hence

γ(%A ⊗ %B) =

[
A 0
0 B

]
.



The covariance matrix criterion (CMC)

CMC

If % =
∑

k pk |ak〉〈ak | ⊗ |bk〉〈bk | is separable, then there exists

κA =
∑
k

pkγ(|ak〉〈ak |) and κB =
∑
k

pkγ(|bk〉〈bk |)

such that

γ(%) ≥
[
κA 0
0 κB

]
=: κA ⊕ κB .

Remarks

This is very similar to the criterion γ ≥ γA ⊕ γB for Gaussian states.

R. Werner, M. Wolf, PRL 86, 3658 (2001).

How can we evaluate this criterion?

For continuous variables we know that γA ≥ iJ but κA ≥??
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Tricks for the evaluation

One can use the following facts:

One can prove that Tr(κA) = dA − 1 (dA is Alice’s dimension).

For 2× 2 matrices we have:[
a c
c b

]
≥ 0 ⇒ a + b ≥ 2|c |

More general:[
X Z
Z Y

]
≥ 0 ⇒ Tr(X ) + Tr(Y ) ≥ 2|Tr(Z )|

Another trick: For any unitary invariant norm (e.g. trace norm)[
X Z
Z Y

]
≥ 0 ⇒

[
‖X‖ ‖Z‖
‖Z‖ ‖Y ‖

]
≥ 0
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The CMC improves the CCNR

Idea. Take the observables from the SD for the CMC!

Result

Define gA
k = Tr(GA

k ) and gB
k = Tr(GB

k ). Then for separable states

2
∑
k

|λk − λ2
kg

A
k g

B
k | ≤ 2−

∑
k

λ2
k

[
(gA

k )2 + (gB
k )2
]
.

Note. This looks ugly, but can be simply computed. Further,
∑

k λk ≤ 1
follows from it.

⇒ The CMC is stronger than the CCNR criterion!
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Local filters

Observation

Transformations of the type

% 7→ %̃ = (FA ⊗ FB)%(FA ⊗ FB)†

preserve separability and entanglement. By this one can map % to

%̃ =
1

dAdB

[
1 +

d2
A−1∑
i=1

ξi (G̃
A
i ⊗ G̃B

i )
]

with traceless orthogonal observables G̃
A/B
i . The proof is constructive.

F. Verstraete, et al., PRA 68, 012103 (2003), J.M. Leinaas, et al., PRA 74, 012313 (2006).

CMC under filtering

If % in a d × d system is separable, then
d2−1∑
i=1

ξi ≤ d2 − d .

This criterion is necessary and sufficient for two qubits!
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Further Results

The CMC criterion is equivalent to the LURs.

The CMC implies also other criteria besides CCNR:
ZZZG, de Vicente ...

J.I. de Vicente, QIC 7, 624 (2007), Zhang⊗3, Guo, PRA 76, 012334 (2007), PRA 77, 060301(R) (2008).

The CMC can be used to bound entanglement measures.

O. Gittsovich et al, PRA 81, 032333 (2010)

Open Question: The relation to the work on complementary of
correlations.

Talk by Lorenzo Maccone



How strong are all these criteria?

Generate randomly chessboard states and check all the criteria.
D. Bruß and A. Peres, PRA 61, 030301 (2000).



Relation to other criteria



The Fisher information and entanglement



Some known relations: FI & Entanglement

Not all entangled states are useful for metrology

P. Hyllus et al., Phys. Rev. A 82, 012337 (2010)

But: A high value of the Fisher information signals presence of
multiparticle entanglement

G Toth, PRA 85, 022322 (2012), P. Hyllus et al., PRA 85, 022321 (2012)

Recent methods allow to bound the Fisher information from few
measurements, the techniques are similar to entanglement
estimation.

Geza’s and Iagoba’s talks!



Fisher information

For the unitary evolution

U = exp{iϕH}

the Fisher information of the state % =
∑

k λk |k〉〈k|

F (%,A) = 2
∑
α,β

(λα − λβ)2

λα + λβ
|〈α|A|β〉|2

bounds the precision

∆(ϕ) ≥ 1√
F



Observation

Key observation

The FI is concave in the state

The FI equals the variance for pure states.
G. Toth, D. Petz, PRA 87, 032324 (2013), S. Yu, arXiv:1302.5311

Question: Can we use this to derive entanglement criteria as we can do
with covariance matrices?

Advantages

The criterion will directly detect useful entanglement.

The techniques from the CMC criterion can be used, up to some
sign flips.
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The FIM

Consider observables Mk and the matrix

F (%,Mk) = 2
∑
α,β

(λα − λβ)2

λα + λβ
〈α|Mi |β〉〈β|Mj |α〉

The diagonal entries are the FI from the Mk

Convexity property

From the convexity of the FI it follows that if % =
∑

k pk%k , then

F (%) ≤
∑
k

pkF (%k).

Interpretation. The FI decreases under mixing the states.
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Properties of the FIM

The FIM is a d2 × d2 matrix with nonnegative eigenvalues.

For a pure state the rank is r(F ) = 2(d − 1), the rank can
maximally be r(F ) = d2 − d .

The eigenvalues of the FIM are

ηk = 2
(λα − λβ)2

λα + λβ

Unless d = 2, the FIM determines % completely.



First criterion

We take the 2d2 observables {Mk} = {Ak ⊗ 1, 1⊗ Bk}. Then

F =

[
A C
CT B

]
,

where A = F (%A, {Ak}) and B = F (%B , {Bk}).

FMC

If % is separable, then there exists

fA =
∑
k

pkF (|ak〉〈ak |) and fB =
∑
k

pkF (|bk〉〈bk |)

such that

F (%) ≤
[
fA 0
0 fB

]
=: fA ⊕ fB .



First criterion

FMC

If % is separable, then there exists

fA =
∑
k

pkF (|ak〉〈ak |) and fB =
∑
k

pkF (|bk〉〈bk |)

such that

F (%) ≤
[
fA 0
0 fB

]
=: fA ⊕ fB .

Problem

For two-qubit states of the form

% = p|ψ−〉〈ψ−|+ (1− p)
1

4

the fa, fb exist already for p = 0.66
⇒ The criterion cannot be very strong, regardless of the evaluation.



Second criterion

We take the d4 observables {Mij} = {Ai ⊗ 1 + 1⊗ Bj}.
Again this matrix has a block structure.

For product states we find:

F (Mij) = |v〉〈v | ⊗ F (%A,Ai ) + F (%B ,Bj)⊗ |v〉〈v |

where |v〉 = (111, ..., 1).

For two-qubit states of the form

% = p|ψ−〉〈ψ−|+ (1− p)
1

4

the matrices exist only for p < 0.33
⇒ Looks better, but so far we have no direct evaluation criterion.
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Conclusion

Covariance matrices are powerful tools to characterize entanglement

The CMC unifies several other known criteria

The Fisher information matrix may also be a useful tool, but we
have to work more.

Is there a relation to R. Augusiak, arXiv:1506.08837 ?
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