
Relationship between communication and
quantum metrology

arxiv:1603.00472

Jan Czajkowski, Marcin Jarzyna, Rafal
Demkowicz-Dobrzanski

Faculty of Physics
University of Warsaw

03.03.2016
RAQM 2016

Marcin Jarzyna Relationship between communication and quantum metrology



Communication Theory

We want to send a message over some noisy channel.

Performance of communication is given by rate R = limn→∞
k
n .

n - number of physical channel uses, k - number of transmitted
bits in n channel uses.
Rate may be calculated easily as mutual information

I(X ,Y ) = H(X )− H(X |Y ) = H(Y )− H(Y |X )

H(Y ) = −
∑

y p(y) log2 p(y) - Shannon entropy.
H(Y |X ) = −

∑
x p(x)

∑
y p(y |x) log2 p(y |x) - conditional entropy.
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Communication Theory - Quantum

Physical situations→ information carrier in state ρx and
measurement Πy .

Conditional probability p(y |x) = Tr(Λ [ρx ] Πy ).
Accessible information: C(1,1) = max{Πy} I(X ,Y )

Holevo bound

C(1,1) ≤ χ = S
(∫

dxp(x)ρx

)
−
∫

dxp(x)S (ρx )
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Superadditivity

General scheme

Output superadditivity: C(1,1) ≤ C(1,k),
C(1,k) = maxΠk

Y
I(X k ,Y k )/k .

Holevo limit saturable for long messages
χ = C(1,∞)≥ C(1,k).
Input superadditivity: use entangled states→
C(k ,∞) ≥ C(1,∞) (Hastings, Nat. Phys. (2009)).
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Estimation Theory

We want to measure some parameter x with the best possible
precision ∆x2 =

∫
p(y |x)(x̃(y)− x)2dy .

Conditional probability p(y |x) = Tr (ρx Πy ), estimator x̃(y).
What is the best precision?
Cramer-Rao inequality, Fisher information

∆x ≥ 1√
kF (x)

, F (x) =

∫
dy

1
p(y |x)

(
dp(y |x)

dx

)2

Bound on precision optimized over all unbiased estimators.
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Estimation Theory - Quantum

What is the best precision? → Optimize over measurements.

Quantum Cramer-Rao inequality

∆x ≥ 1√
kFQ(x)

FQ(x) = Tr
(
ρxL2

x
)

- quantum Fisher information (QFI), Lx -
symmetric logarithmic derivative dρx

dx = 1
2 (ρxLx + Lxρx ).

No output superadditivity F (1,1)
Q = F (1,k)

Q , where
F (1,k) = FQ[ρ⊗k

x ]/k .
Input superadditivity F (k,k) ≥ F (1,1).
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Communication vs. Estimation

Communication = Estimation?
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Communication vs. Estimation

Compare schemes:

Inferring x from the measurement results.
x encoded in seed state |ψ〉 by channel εx .
Substitute Λ ◦ εx → Λx .
Communication ≈ estimation.
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Classical Case - Weak Estimation Limit

Variance of prior - σ2, expected value - x̄ .
Narrow prior distribution σ2 � 1.

p(y |x) ≈ p(y |x̄) + ṗ(y |x̄)(x − x̄) + (x−x̄)2

2 p̈(y |x̄)

p(y) ≈ p(y |x̄) + σ2

2 p̈(y |x̄)

Assume σ2 � 1/F (x̄)

Mutual information

I(X ,Y ) ≈ σ2

2 ln 2
F (x̄)

Expansion of relative entropy D (p(y |x)||p(y |x + δx)) ≈ F (x)
2 ln 2δx

2,
D(p||q) =

∫
p(x) log p(x)

q(x) dx .

I(X ,Y ) =
∫

p(x)D(p(y |x)||p(y))dy .
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p(y |x) ≈ p(y |x̄) + ṗ(y |x̄)(x − x̄) + (x−x̄)2

2 p̈(y |x̄)

p(y) ≈ p(y |x̄) + σ2

2 p̈(y |x̄)

Assume σ2 � 1/F (x̄)

Mutual information

I(X ,Y ) ≈ σ2

2 ln 2
F (x̄)

Expansion of relative entropy D (p(y |x)||p(y |x + δx)) ≈ F (x)
2 ln 2δx

2,
D(p||q) =

∫
p(x) log p(x)

q(x) dx .

I(X ,Y ) =
∫

p(x)D(p(y |x)||p(y))dy .

Marcin Jarzyna Relationship between communication and quantum metrology



Classical Case - Weak Estimation Limit

Variance of prior - σ2, expected value - x̄ .
Narrow prior distribution σ2 � 1.
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Quantum Case

We want to know Holevo quantity χ
Obvious: maximize Fisher information C(1,1) ≈ σ2

2 ln 2FQ(x̄).
Narrow prior distribution σ2 � 1
ρx ≈ ρx̄ + (x − x̄)ρ̇x̄ + (x−x̄)2

2 ρ̈x̄

Use perturbation theory in χ = S(
∫

p(x)ρx )−
∫

p(x)S(ρx ).
Holevo quantity

χ ≈ σ2J(x̄)

2 ln 2
−
∑

n=r+1

σ2Fn(x̄)

4
log2

σ2Fn(x̄)

4e

J(x) - relative entropy QFI D(ρx ||ρx+dx ) ≈ J(x)dx2

2 .
Fn(x̄) = 〈n|Lx̄ρx̄Lx̄ |n〉 - n-th component of QFI.
r - rank of ρx̄ , |n〉 - eigenvector of ρ̈x̄ in the kernel of ρx̄ .

Pure states→ χ ≈ −σ2FQ(x̄)
4 log2

σ2FQ(x̄)
4e ,mixed states→

χ = σ2J(x̄)
2 ln 2 .
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Superadditivity

Output superadditivity:
In general J(x) ≥ FQ(x).
For mixed output states

γ =
χ

C(1,1)
≈ J(x̄)

FQ(x̄)
≥ 1

For pure output states

γ =
χ

C(1,1)
= − ln 2

2
log2

σ2FQ(x̄)

4e
σ2→0

= ∞

Input superadditivity:
Recall: Superadditivity of QFI and REQFI.
Mixed states: C(k,∞)

C(1,∞) = J(k,∞)

J(1,∞) ≥ 1.

Pure states: F (k ,∞) ≥ F (1,∞) → C(k ,∞) ≥ C(1,∞).
Warning: Do not increase k to much! σ2 � 1/F (x̄)
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Thermal Channel

Send coherent states |α〉 = D(α)|0〉 → encoding in the x
quadrature.
Gaussian prior distribution p(α) = 1√

2πn̄
e−α

2/2n̄.
n̄� 1- average number of photons per channel use - weak
power regime.

Thermal channel :
ρN̄th

- thermal state with
average number of
photons N̄th, η -
transmission.

Output state ρα = D(
√
ηα)ρ(1−η)N̄th

D†(
√
ηα).

J = 2η ln
1 + (1− η)N̄th

(1− η)N̄th
, FQ =

4η
1 + 2(1− η)N̄th

Thermal environment χ ≈ ηn̄ log2
1+(1−η)N̄th

(1−η)N̄th
.

Lossy environment (N̄th = 0) χ ≈ ηn̄ log2
e
ηn̄ .
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Thermal Channel
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n̄ = 0.01, red N̄th = 0.1, black N̄th = 1, solid - exact results,
dashed - approximate results.

Inset - convergence of the approximation: N̄th = 0, η = 0.9 -
dotted; N̄th = 0.1, η = 0.5 - red; N̄th = 1, η = 0.99 - black, solid.
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Conclusions

Estimation theory may be used to get insight into
communication.
Input and output superadditivity in communication and
estimation are connected.
Can we extend these results to more complicated
situations (phase noise etc.)?
Sending different symbols - multiparameter estimation?

Thank You!
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