Relationship between communication and quantum metrology arxiv:1603.00472

Jan Czajkowski, Marcin Jarzyna, Rafal Demkowicz-Dobrzanski

Faculty of Physics University of Warsaw

03.03.2016 RAQM 2016

Marcin Jarzyna Relationship between communication and quantum metrology

▲ 圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Marcin Jarzyna Relationship between communication and quantum metrology

▲御 ▶ ▲ 臣 ▶ ▲ 臣

• We want to send a message over some noisy channel.

・ロト ・回ト ・ヨト ・ヨト

• We want to send a message over some noisy channel.

・ 同 ト ・ ヨ ト ・ ヨ ト

• We want to send a message over some noisy channel.

• Performance of communication is given by rate $R = \lim_{n \to \infty} \frac{k}{n}$.

・ 同 ト ・ ヨ ト ・ ヨ ト

• We want to send a message over some noisy channel.

- Performance of communication is given by rate $R = \lim_{n \to \infty} \frac{k}{n}$.
- *n* number of physical channel uses, *k* number of transmitted bits in *n* channel uses.

・聞き ・ヨト ・ヨト

We want to send a message over some noisy channel.

- Performance of communication is given by rate $R = \lim_{n \to \infty} \frac{k}{n}$.
- *n* number of physical channel uses, *k* number of transmitted bits in *n* channel uses.
- Rate may be calculated easily as mutual information

$$I(X, Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$$

・ 同 ト ・ ヨ ト ・ ヨ ト

• We want to send a message over some noisy channel.

$$p(x), \mathbf{x} \underbrace{\qquad}_{p(y|x)} \mathbf{y}$$

- Performance of communication is given by rate $R = \lim_{n \to \infty} \frac{k}{n}$.
- *n* number of physical channel uses, *k* number of transmitted bits in *n* channel uses.
- Rate may be calculated easily as mutual information

$$I(X, Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$$

•
$$H(Y) = -\sum_{y} p(y) \log_2 p(y)$$
 - Shannon entropy.

・聞き ・ヨト ・ヨト

We want to send a message over some noisy channel.

$$p(x), \mathbf{x} \qquad \qquad \mathbf{y}$$
 $p(y|x)$

- Performance of communication is given by rate $R = \lim_{n \to \infty} \frac{k}{n}$.
- *n* number of physical channel uses, *k* number of transmitted bits in *n* channel uses.
- Rate may be calculated easily as mutual information

$$I(X, Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$$

- $H(Y) = -\sum_{y} p(y) \log_2 p(y)$ Shannon entropy.
- $H(Y|X) = -\sum_{x} p(x) \sum_{y} p(y|x) \log_2 p(y|x)$ conditional entropy.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Marcin Jarzyna Relationship between communication and quantum metrology

▲圖> ▲ ヨ> ▲ ヨ>

夏

 Physical situations → information carrier in state ρ_x and measurement Π_y.

・ 同 ト ・ ヨ ト ・ ヨ ト

 Physical situations → information carrier in state ρ_x and measurement Π_y.

• Conditional probability $p(y|x) = \text{Tr}(\Lambda[\rho_x]\Pi_y)$.

- Conditional probability $p(y|x) = \text{Tr}(\Lambda[\rho_x]\Pi_y)$.
- Accessible information: $C^{(1,1)} = \max_{\{\Pi_y\}} I(X, Y)$

- Conditional probability $p(y|x) = \text{Tr}(\Lambda[\rho_x]\Pi_y)$.
- Accessible information: $C^{(1,1)} = \max_{\{\Pi_Y\}} I(X, Y)$
- Holevo bound

- Conditional probability $p(y|x) = \text{Tr}(\Lambda[\rho_x] \Pi_y)$.
- Accessible information: $C^{(1,1)} = \max_{\{\Pi_y\}} I(X, Y)$
- Holevo bound

$$C^{(1,1)} \leq \chi = S\left(\int dx p(x)
ho_x
ight) - \int dx p(x) S(
ho_x)$$

Superadditivity

Marcin Jarzyna Relationship between communication and quantum metrology

イロン イロン イヨン イヨン

æ

⇒ < ⇒ >

ъ

• Output superadditivity: $C^{(1,1)} \leq C^{(1,k)}$, $C^{(1,k)} = \max_{\Pi_Y^k} I(X^k, Y^k)/k$.

∃ ► < ∃ ►</p>

- Output superadditivity: $C^{(1,1)} \leq C^{(1,k)}$, $C^{(1,k)} = \max_{\Pi_Y^k} I(X^k, Y^k)/k$.
- Holevo limit saturable for long messages $\chi = C^{(1,\infty)}$

프 🖌 🖌 프 🕨

- Output superadditivity: $C^{(1,1)} \leq C^{(1,k)}$, $C^{(1,k)} = \max_{\Pi_Y^k} I(X^k, Y^k)/k$.
- Holevo limit saturable for long messages $\chi = C^{(1,\infty)} \ge C^{(1,k)}$.

(4) 臣() (4) 臣()

- Output superadditivity: $C^{(1,1)} \leq C^{(1,k)}$, $C^{(1,k)} = \max_{\Pi_Y^k} I(X^k, Y^k)/k.$
- Holevo limit saturable for long messages $\chi = C^{(1,\infty)} \ge C^{(1,k)}$.
- Input superadditivity: use entangled states → C^(k,∞) ≥ C^(1,∞) (Hastings, Nat. Phys. (2009)).

• We want to measure some parameter x with the best possible precision $\Delta x^2 = \int p(y|x)(\tilde{x}(y) - x)^2 dy$.

ヘロト ヘ戸ト ヘヨト ヘヨト

æ

• We want to measure some parameter x with the best possible precision $\Delta x^2 = \int p(y|x)(\tilde{x}(y) - x)^2 dy$.

프 🖌 🖌 프

• We want to measure some parameter x with the best possible precision $\Delta x^2 = \int p(y|x)(\tilde{x}(y) - x)^2 dy$.

• Conditional probability $p(y|x) = \text{Tr}(\rho_x \Pi_y)$, estimator $\tilde{x}(y)$.

3

• We want to measure some parameter x with the best possible precision $\Delta x^2 = \int p(y|x)(\tilde{x}(y) - x)^2 dy$.

- Conditional probability $p(y|x) = \text{Tr}(\rho_x \Pi_y)$, estimator $\tilde{x}(y)$.
- What is the best precision?

• We want to measure some parameter x with the best possible precision $\Delta x^2 = \int p(y|x)(\tilde{x}(y) - x)^2 dy$.

- Conditional probability $p(y|x) = \text{Tr}(\rho_x \Pi_y)$, estimator $\tilde{x}(y)$.
- What is the best precision?
- Cramer-Rao inequality, Fisher information

$$\Delta x \geq rac{1}{\sqrt{kF(x)}}, \quad F(x) = \int dy rac{1}{p(y|x)} \left(rac{dp(y|x)}{dx}
ight)^2$$

• We want to measure some parameter x with the best possible precision $\Delta x^2 = \int p(y|x)(\tilde{x}(y) - x)^2 dy$.

- Conditional probability $p(y|x) = \text{Tr}(\rho_x \Pi_y)$, estimator $\tilde{x}(y)$.
- What is the best precision?
- Cramer-Rao inequality, Fisher information

$$\Delta x \geq rac{1}{\sqrt{kF(x)}}, \quad F(x) = \int dy rac{1}{p(y|x)} \left(rac{dp(y|x)}{dx}
ight)^2$$

Bound on precision optimized over all unbiased estimators.

Marcin Jarzyna Relationship between communication and quantum metrology

・ロト ・回ト ・ヨト ・ヨト

• What is the best precision?

・ロト ・回ト ・ヨト ・ヨト

• What is the best precision? \rightarrow Optimize over measurements.

イロト イポト イヨト イヨト

● What is the best precision? → Optimize over measurements.

Marcin Jarzyna Relationship between communication and quantum metrology

3

• What is the best precision? \rightarrow Optimize over measurements.

Quantum Cramer-Rao inequality

$$\Delta x \geq \frac{1}{\sqrt{kF_Q(x)}}$$

ъ

• What is the best precision? \rightarrow Optimize over measurements.

Quantum Cramer-Rao inequality

$$\Delta x \geq \frac{1}{\sqrt{kF_Q(x)}}$$

 $F_Q(x) = \text{Tr} \left(\rho_x L_x^2 \right)$ - quantum Fisher information (QFI),

→ E → < E →</p>

• What is the best precision? \rightarrow Optimize over measurements.

Quantum Cramer-Rao inequality

$$\Delta x \geq \frac{1}{\sqrt{kF_Q(x)}}$$

 $F_Q(x) = \text{Tr} \left(\rho_x L_x^2 \right)$ - quantum Fisher information (QFI), L_x - symmetric logarithmic derivative $\frac{d\rho_x}{dx} = \frac{1}{2} \left(\rho_x L_x + L_x \rho_x \right)$.

• What is the best precision? \rightarrow Optimize over measurements.

• No output superadditivity $F_Q^{(1,1)} = F_Q^{(1,k)}$, where $F^{(1,k)} = F_Q[\rho_x^{\otimes k}]/k$.

くロト (過) (目) (日)
Estimation Theory - Quantum

• What is the best precision? \rightarrow Optimize over measurements.

• No output superadditivity $F_Q^{(1,1)} = F_Q^{(1,k)}$, where $F^{(1,k)} = F_Q[\rho_x^{\otimes k}]/k$.

• Input superadditivity $F^{(k,k)} \ge F^{(1,1)}$.

Communication vs. Estimation

Marcin Jarzyna Relationship between communication and quantum metrology

★週 ▶ ★ 臣 ▶ ★ 臣 ▶

Communication = Estimation?

Marcin Jarzyna Relationship between communication and quantum metrology

・ 回 ト ・ ヨ ト ・ ヨ ト

Communication vs. Estimation

Marcin Jarzyna Relationship between communication and quantum metrology

★週 ▶ ★ 臣 ▶ ★ 臣 ▶

• Compare schemes:

→ E → < E →</p>

• Compare schemes:

• Inferring *x* from the measurement results.

글 🕨 🖌 글

Compare schemes:

- Inferring *x* from the measurement results.
- *x* encoded in seed state $|\psi\rangle$ by channel ε_x .

Compare schemes:

- Inferring *x* from the measurement results.
- *x* encoded in seed state $|\psi\rangle$ by channel ε_x .
- Substitute $\Lambda \circ \varepsilon_X \to \Lambda_X$.

• Compare schemes:

- Inferring *x* from the measurement results.
- *x* encoded in seed state $|\psi\rangle$ by channel ε_x .
- Substitute $\Lambda \circ \varepsilon_X \to \Lambda_X$.
- Communication \approx estimation.

Marcin Jarzyna Relationship between communication and quantum metrology

★週 ▶ ★ 臣 ▶ ★ 臣 ▶

• Variance of prior - σ^2 , expected value - \bar{x} .

□ > < E > < E >

- Variance of prior σ^2 , expected value \bar{x} .
- Narrow prior distribution $\sigma^2 \ll 1$.

伺 とくき とくき と

- Variance of prior σ^2 , expected value \bar{x} .
- Narrow prior distribution $\sigma^2 \ll 1$.

•
$$p(y|x) \approx p(y|\bar{x}) + \dot{p}(y|\bar{x})(x-\bar{x}) + \frac{(x-\bar{x})^2}{2}\ddot{p}(y|\bar{x})$$

伺 とくき とくき と

- Variance of prior σ^2 , expected value \bar{x} .
- Narrow prior distribution $\sigma^2 \ll 1$.
- $p(y|x) \approx p(y|\bar{x}) + \dot{p}(y|\bar{x})(x-\bar{x}) + \frac{(x-\bar{x})^2}{2}\ddot{p}(y|\bar{x})$
- $p(y) \approx p(y|\bar{x}) + \frac{\sigma^2}{2}\ddot{p}(y|\bar{x})$

(雪) (ヨ) (ヨ)

- Variance of prior σ^2 , expected value \bar{x} .
- Narrow prior distribution $\sigma^2 \ll 1$.
- $p(y|x) \approx p(y|\bar{x}) + \dot{p}(y|\bar{x})(x-\bar{x}) + \frac{(x-\bar{x})^2}{2}\ddot{p}(y|\bar{x})$
- $p(y) \approx p(y|\bar{x}) + \frac{\sigma^2}{2}\ddot{p}(y|\bar{x})$
- Assume $\sigma^2 \ll 1/F(\bar{x})$

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Variance of prior σ^2 , expected value \bar{x} .
- Narrow prior distribution $\sigma^2 \ll 1$.

•
$$p(y|x) \approx p(y|\bar{x}) + \dot{p}(y|\bar{x})(x-\bar{x}) + rac{(x-\bar{x})^2}{2}\ddot{p}(y|\bar{x})$$

- $p(y) \approx p(y|\bar{x}) + \frac{\sigma^2}{2}\ddot{p}(y|\bar{x})$
- Assume $\sigma^2 \ll 1/F(\bar{x})$
- Mutual information

- Variance of prior σ^2 , expected value \bar{x} .
- Narrow prior distribution $\sigma^2 \ll 1$.
- $p(y|x) \approx p(y|\bar{x}) + \dot{p}(y|\bar{x})(x-\bar{x}) + \frac{(x-\bar{x})^2}{2}\ddot{p}(y|\bar{x})$
- $p(y) \approx p(y|\bar{x}) + \frac{\sigma^2}{2}\ddot{p}(y|\bar{x})$
- Assume $\sigma^2 \ll 1/F(\bar{x})$
- Mutual information

$$I(X, Y) \approx \frac{\sigma^2}{2\ln 2} F(\bar{x})$$

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Variance of prior σ^2 , expected value \bar{x} .
- Narrow prior distribution $\sigma^2 \ll 1$.
- $p(y|x) \approx p(y|\bar{x}) + \dot{p}(y|\bar{x})(x-\bar{x}) + \frac{(x-\bar{x})^2}{2}\ddot{p}(y|\bar{x})$
- $p(y) \approx p(y|\bar{x}) + \frac{\sigma^2}{2}\ddot{p}(y|\bar{x})$
- Assume $\sigma^2 \ll 1/F(\bar{x})$
- Mutual information

$$I(X, Y) \approx \frac{\sigma^2}{2\ln 2} F(\bar{x})$$

• Expansion of relative entropy $D(p(y|x)||p(y|x + \delta x)) \approx \frac{F(x)}{2 \ln 2} \delta x^2$, $D(p||q) = \int p(x) \log \frac{p(x)}{q(x)} dx$.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

- Variance of prior σ^2 , expected value \bar{x} .
- Narrow prior distribution $\sigma^2 \ll 1$.
- $p(y|x) \approx p(y|\bar{x}) + \dot{p}(y|\bar{x})(x-\bar{x}) + \frac{(x-\bar{x})^2}{2}\ddot{p}(y|\bar{x})$
- $p(y) \approx p(y|\bar{x}) + \frac{\sigma^2}{2}\ddot{p}(y|\bar{x})$
- Assume $\sigma^2 \ll 1/F(\bar{x})$
- Mutual information

$$I(X, Y) \approx \frac{\sigma^2}{2\ln 2} F(\bar{x})$$

- Expansion of relative entropy $D(p(y|x)||p(y|x + \delta x)) \approx \frac{F(x)}{2 \ln 2} \delta x^2$, $D(p||q) = \int p(x) \log \frac{p(x)}{q(x)} dx$.
- $I(X, Y) = \int p(x)D(p(y|x)||p(y))dy.$

イロト イポト イヨト イヨト 三日

Marcin Jarzyna Relationship between communication and quantum metrology

イロン イロン イヨン イヨン

æ

• We want to know Holevo quantity χ

イロン イロン イヨン イヨン

ъ

- We want to know Holevo quantity χ
- Obvious:

◆□ > ◆□ > ◆豆 > ◆豆 > -

ъ

- We want to know Holevo quantity χ
- Obvious: maximize Fisher information

イロト イポト イヨト イヨト

- We want to know Holevo quantity χ
- Obvious: maximize Fisher information $C^{(1,1)} \approx \frac{\sigma^2}{2 \ln 2} F_Q(\bar{x})$.

ヘロト 人間 ト ヘヨト ヘヨト

э.

- We want to know Holevo quantity χ
- Obvious: maximize Fisher information $C^{(1,1)} \approx \frac{\sigma^2}{2 \ln 2} F_Q(\bar{x})$.
- Narrow prior distribution $\sigma^2 \ll 1$

ヘロト 人間 ト ヘヨト ヘヨト

æ

- We want to know Holevo quantity χ
- Obvious: maximize Fisher information $C^{(1,1)} \approx \frac{\sigma^2}{2 \ln 2} F_Q(\bar{x})$.
- Narrow prior distribution $\sigma^2 \ll 1$

$$\rho_{\mathbf{X}} \approx \rho_{\bar{\mathbf{X}}} + (\mathbf{X} - \bar{\mathbf{X}})\dot{\rho}_{\bar{\mathbf{X}}} + \frac{(\mathbf{X} - \bar{\mathbf{X}})^2}{2}\ddot{\rho}_{\bar{\mathbf{X}}}$$

ヘロト 人間 ト ヘヨト ヘヨト

æ

- We want to know Holevo quantity χ
- Obvious: maximize Fisher information $C^{(1,1)} \approx \frac{\sigma^2}{2 \ln 2} F_Q(\bar{x})$.
- Narrow prior distribution $\sigma^2 \ll 1$

$$\rho_{\mathbf{X}} \approx \rho_{\bar{\mathbf{X}}} + (\mathbf{X} - \bar{\mathbf{X}})\dot{\rho}_{\bar{\mathbf{X}}} + \frac{(\mathbf{X} - \bar{\mathbf{X}})^2}{2}\ddot{\rho}_{\bar{\mathbf{X}}}$$

• Use perturbation theory in $\chi = S(\int p(x)\rho_x) - \int p(x)S(\rho_x)$.

- We want to know Holevo quantity χ
- Obvious: maximize Fisher information $C^{(1,1)} \approx \frac{\sigma^2}{2 \ln 2} F_Q(\bar{x})$.
- Narrow prior distribution $\sigma^2 \ll 1$

$$\rho_{\mathbf{X}} \approx \rho_{\mathbf{\bar{X}}} + (\mathbf{X} - \mathbf{\bar{X}})\dot{\rho}_{\mathbf{\bar{X}}} + \frac{(\mathbf{X} - \mathbf{\bar{X}})^2}{2}\ddot{\rho}_{\mathbf{\bar{X}}}$$

- Use perturbation theory in $\chi = S(\int p(x)\rho_x) \int p(x)S(\rho_x)$.
- Holevo quantity

$$\chi \approx \frac{\sigma^2 J(\bar{x})}{2 \ln 2} - \sum_{n=r+1} \frac{\sigma^2 F_n(\bar{x})}{4} \log_2 \frac{\sigma^2 F_n(\bar{x})}{4e}$$

・聞き ・ヨキ ・ヨト

- We want to know Holevo quantity χ
- Obvious: maximize Fisher information $C^{(1,1)} \approx \frac{\sigma^2}{2 \ln 2} F_Q(\bar{x})$.
- Narrow prior distribution $\sigma^2 \ll 1$

$$\rho_{\mathbf{X}} \approx \rho_{\mathbf{\bar{X}}} + (\mathbf{X} - \mathbf{\bar{X}})\dot{\rho}_{\mathbf{\bar{X}}} + \frac{(\mathbf{X} - \mathbf{\bar{X}})^2}{2}\ddot{\rho}_{\mathbf{\bar{X}}}$$

- Use perturbation theory in $\chi = S(\int p(x)\rho_x) \int p(x)S(\rho_x)$.
- Holevo quantity

$$\chi \approx \frac{\sigma^2 J(\bar{x})}{2 \ln 2} - \sum_{n=r+1} \frac{\sigma^2 F_n(\bar{x})}{4} \log_2 \frac{\sigma^2 F_n(\bar{x})}{4e}$$

• J(x) - relative entropy QFI $D(\rho_x || \rho_{x+dx}) \approx J(x) \frac{dx^2}{2}$.

ヘロン 人間 とくほ とくほ とう

∃ \0<</p>\0

- We want to know Holevo quantity χ
- Obvious: maximize Fisher information $C^{(1,1)} \approx \frac{\sigma^2}{2 \ln 2} F_Q(\bar{x})$.
- Narrow prior distribution $\sigma^2 \ll 1$

$$\rho_{\mathbf{X}} \approx \rho_{\mathbf{\bar{X}}} + (\mathbf{X} - \mathbf{\bar{X}})\dot{\rho}_{\mathbf{\bar{X}}} + \frac{(\mathbf{X} - \mathbf{\bar{X}})^2}{2}\ddot{\rho}_{\mathbf{\bar{X}}}$$

- Use perturbation theory in $\chi = S(\int p(x)\rho_x) \int p(x)S(\rho_x)$.
- Holevo quantity

$$\chi \approx \frac{\sigma^2 J(\bar{x})}{2 \ln 2} - \sum_{n=r+1} \frac{\sigma^2 F_n(\bar{x})}{4} \log_2 \frac{\sigma^2 F_n(\bar{x})}{4e}$$

- J(x) relative entropy QFI $D(\rho_x||\rho_{x+dx}) \approx J(x)\frac{dx^2}{2}$.
- $F_n(\bar{x}) = \langle n | L_{\bar{x}} \rho_{\bar{x}} L_{\bar{x}} | n \rangle$ *n*-th component of QFI.

ヘロン 人間 とくほ とくほ とう

- We want to know Holevo quantity χ
- Obvious: maximize Fisher information $C^{(1,1)} \approx \frac{\sigma^2}{2 \ln 2} F_Q(\bar{x})$.
- Narrow prior distribution $\sigma^2 \ll 1$

$$\rho_{\mathbf{X}} \approx \rho_{\mathbf{\bar{X}}} + (\mathbf{X} - \mathbf{\bar{X}})\dot{\rho}_{\mathbf{\bar{X}}} + \frac{(\mathbf{X} - \mathbf{\bar{X}})^2}{2}\ddot{\rho}_{\mathbf{\bar{X}}}$$

- Use perturbation theory in $\chi = S(\int p(x)\rho_x) \int p(x)S(\rho_x)$.
- Holevo quantity

$$\chi \approx \frac{\sigma^2 J(\bar{x})}{2 \ln 2} - \sum_{n=r+1} \frac{\sigma^2 F_n(\bar{x})}{4} \log_2 \frac{\sigma^2 F_n(\bar{x})}{4e}$$

- J(x) relative entropy QFI $D(\rho_x || \rho_{x+dx}) \approx J(x) \frac{dx^2}{2}$.
- $F_n(\bar{x}) = \langle n | L_{\bar{x}} \rho_{\bar{x}} L_{\bar{x}} | n \rangle$ *n*-th component of QFI.
- *r* rank of $\rho_{\bar{x}}$, $|n\rangle$ eigenvector of $\ddot{\rho}_{\bar{x}}$ in the kernel of $\rho_{\bar{x}}$.

ヘロン 人間 とくほ とくほ とう

- We want to know Holevo quantity χ
- Obvious: maximize Fisher information $C^{(1,1)} \approx \frac{\sigma^2}{2 \ln 2} F_Q(\bar{x})$.
- Narrow prior distribution $\sigma^2 \ll 1$

$$\rho_{\mathbf{X}} \approx \rho_{\mathbf{\bar{X}}} + (\mathbf{X} - \mathbf{\bar{X}})\dot{\rho}_{\mathbf{\bar{X}}} + \frac{(\mathbf{X} - \mathbf{\bar{X}})^2}{2}\ddot{\rho}_{\mathbf{\bar{X}}}$$

- Use perturbation theory in $\chi = S(\int p(x)\rho_x) \int p(x)S(\rho_x)$.
- Holevo quantity

$$\chi \approx \frac{\sigma^2 J(\bar{x})}{2 \ln 2} - \sum_{n=r+1} \frac{\sigma^2 F_n(\bar{x})}{4} \log_2 \frac{\sigma^2 F_n(\bar{x})}{4e}$$

- J(x) relative entropy QFI $D(\rho_x || \rho_{x+dx}) \approx J(x) \frac{dx^2}{2}$.
- $F_n(\bar{x}) = \langle n | L_{\bar{x}} \rho_{\bar{x}} L_{\bar{x}} | n \rangle$ *n*-th component of QFI.
- *r* rank of $\rho_{\bar{x}}$, $|n\rangle$ eigenvector of $\ddot{\rho}_{\bar{x}}$ in the kernel of $\rho_{\bar{x}}$.
- Pure states $\rightarrow \chi \approx -\frac{\sigma^2 F_Q(\bar{x})}{4} \log_2 \frac{\sigma^2 F_Q(\bar{x})}{4e}$,

ヘロン 人間 とくほ とくほ とう

- We want to know Holevo quantity χ
- Obvious: maximize Fisher information $C^{(1,1)} \approx \frac{\sigma^2}{2 \ln 2} F_Q(\bar{x})$.
- Narrow prior distribution $\sigma^2 \ll 1$

$$\rho_{\mathbf{X}} \approx \rho_{\bar{\mathbf{X}}} + (\mathbf{X} - \bar{\mathbf{X}})\dot{\rho}_{\bar{\mathbf{X}}} + \frac{(\mathbf{X} - \bar{\mathbf{X}})^2}{2}\ddot{\rho}_{\bar{\mathbf{X}}}$$

- Use perturbation theory in $\chi = S(\int p(x)\rho_x) \int p(x)S(\rho_x)$.
- Holevo quantity

$$\chi \approx \frac{\sigma^2 J(\bar{x})}{2 \ln 2} - \sum_{n=r+1} \frac{\sigma^2 F_n(\bar{x})}{4} \log_2 \frac{\sigma^2 F_n(\bar{x})}{4e}$$

- J(x) relative entropy QFI $D(\rho_x || \rho_{x+dx}) \approx J(x) \frac{dx^2}{2}$.
- $F_n(\bar{x}) = \langle n | L_{\bar{x}} \rho_{\bar{x}} L_{\bar{x}} | n \rangle$ *n*-th component of QFI.
- *r* rank of $\rho_{\bar{x}}$, $|n\rangle$ eigenvector of $\ddot{\rho}_{\bar{x}}$ in the kernel of $\rho_{\bar{x}}$.
- Pure states $\rightarrow \chi \approx -\frac{\sigma^2 F_Q(\bar{x})}{4} \log_2 \frac{\sigma^2 F_Q(\bar{x})}{4e}$, mixed states $\rightarrow \chi = \frac{\sigma^2 J(\bar{x})}{2 \ln 2}$.

Superadditivity

Marcin Jarzyna Relationship between communication and quantum metrology

イロン イロン イヨン イヨン

æ

Superadditivity

Output superadditivity:

イロン イロン イヨン イヨン

Superadditivity

Output superadditivity:

• In general $J(x) \ge F_Q(x)$.

・ 同 ト ・ ヨ ト ・ ヨ ト

ъ
Output superadditivity:

- In general $J(x) \ge F_Q(x)$.
- For mixed output states

$$\gamma = rac{\chi}{\mathcal{C}^{(1,1)}} pprox rac{J(ar{x})}{\mathcal{F}_{\mathcal{Q}}(ar{x})} \ge 1$$

Output superadditivity:

- In general $J(x) \ge F_Q(x)$.
- For mixed output states

$$\gamma = rac{\chi}{\mathcal{C}^{(1,1)}} pprox rac{J(ar{x})}{\mathcal{F}_{\mathcal{Q}}(ar{x})} \geq 1$$

For pure output states

$$\gamma = \frac{\chi}{C^{(1,1)}} = -\frac{\ln 2}{2} \log_2 \frac{\sigma^2 F_Q(\bar{x})}{4e} \stackrel{\sigma^2 \to 0}{=} \infty$$

Output superadditivity:

- In general $J(x) \ge F_Q(x)$.
- For mixed output states

$$\gamma = rac{\chi}{\mathcal{C}^{(1,1)}} pprox rac{J(ar{x})}{\mathcal{F}_{\mathcal{Q}}(ar{x})} \geq 1$$

For pure output states

$$\gamma = \frac{\chi}{C^{(1,1)}} = -\frac{\ln 2}{2} \log_2 \frac{\sigma^2 F_Q(\bar{x})}{4e} \stackrel{\sigma^2 \to 0}{=} \infty$$

Input superadditivity:

Output superadditivity:

- In general $J(x) \ge F_Q(x)$.
- For mixed output states

$$\gamma = rac{\chi}{\mathcal{C}^{(1,1)}} pprox rac{J(ar{x})}{\mathcal{F}_{\mathcal{Q}}(ar{x})} \geq 1$$

For pure output states

$$\gamma = \frac{\chi}{C^{(1,1)}} = -\frac{\ln 2}{2} \log_2 \frac{\sigma^2 F_Q(\bar{x})}{4e} \stackrel{\sigma^2 \to 0}{=} \infty$$

Input superadditivity:

• Recall: Superadditivity of QFI and REQFI.

Output superadditivity:

- In general $J(x) \ge F_Q(x)$.
- For mixed output states

$$\gamma = rac{\chi}{\mathcal{C}^{(1,1)}} pprox rac{J(ar{x})}{\mathcal{F}_{\mathcal{Q}}(ar{x})} \geq 1$$

For pure output states

$$\gamma = \frac{\chi}{C^{(1,1)}} = -\frac{\ln 2}{2} \log_2 \frac{\sigma^2 F_Q(\bar{x})}{4e} \stackrel{\sigma^2 \to 0}{=} \infty$$

Input superadditivity:

- Recall: Superadditivity of QFI and REQFI.
- Mixed states: $\frac{C^{(k,\infty)}}{C^{(1,\infty)}} = \frac{J^{(k,\infty)}}{J^{(1,\infty)}} \ge 1.$

ヘロト ヘ戸ト ヘヨト ヘヨト

Output superadditivity:

- In general $J(x) \ge F_Q(x)$.
- For mixed output states

$$\gamma = rac{\chi}{\mathcal{C}^{(1,1)}} pprox rac{J(ar{x})}{\mathcal{F}_{\mathcal{Q}}(ar{x})} \geq 1$$

For pure output states

$$\gamma = \frac{\chi}{C^{(1,1)}} = -\frac{\ln 2}{2} \log_2 \frac{\sigma^2 F_Q(\bar{x})}{4e} \stackrel{\sigma^2 \to 0}{=} \infty$$

Input superadditivity:

- Recall: Superadditivity of QFI and REQFI.
- Mixed states: $\frac{C^{(k,\infty)}}{C^{(1,\infty)}} = \frac{J^{(k,\infty)}}{J^{(1,\infty)}} \ge 1.$
- Pure states: $F^{(k,\infty)} \ge F^{(1,\infty)} \to C^{(k,\infty)} \ge C^{(1,\infty)}$.

イロト イポト イヨト イヨト

Output superadditivity:

- In general $J(x) \ge F_Q(x)$.
- For mixed output states

$$\gamma = rac{\chi}{\mathcal{C}^{(1,1)}} pprox rac{J(ar{x})}{\mathcal{F}_{\mathcal{Q}}(ar{x})} \geq 1$$

For pure output states

$$\gamma = \frac{\chi}{C^{(1,1)}} = -\frac{\ln 2}{2} \log_2 \frac{\sigma^2 F_Q(\bar{x})}{4e} \stackrel{\sigma^2 \to 0}{=} \infty$$

Input superadditivity:

- Recall: Superadditivity of QFI and REQFI.
- Mixed states: $\frac{C^{(k,\infty)}}{C^{(1,\infty)}} = \frac{J^{(k,\infty)}}{J^{(1,\infty)}} \ge 1.$
- Pure states: $F^{(k,\infty)} \ge F^{(1,\infty)} \to C^{(k,\infty)} \ge C^{(1,\infty)}$.
- Warning: Do not increase k to much! $\sigma^2 \ll 1/F(\bar{x})$

Marcin Jarzyna Relationship between communication and quantum metrology

イロン イロン イヨン イヨン

æ

Send coherent states |α⟩ = D(α)|0⟩ → encoding in the x quadrature.

・ロン・西方・ ・ ヨン・ ヨン・

E DQC

- Send coherent states |α⟩ = D(α)|0⟩ → encoding in the x quadrature.
- Gaussian prior distribution $p(\alpha) = \frac{1}{\sqrt{2\pi\bar{n}}} e^{-\alpha^2/2\bar{n}}$.

イロト イポト イヨト イヨト

E DQC

- Send coherent states |α⟩ = D(α)|0⟩ → encoding in the x quadrature.
- Gaussian prior distribution $p(\alpha) = \frac{1}{\sqrt{2\pi\bar{n}}}e^{-\alpha^2/2\bar{n}}$.
- $\bar{n} \ll$ 1- average number of photons per channel use weak power regime.

ヘロン 人間 とくほ とくほ とう

э.

- Send coherent states |α⟩ = D(α)|0⟩ → encoding in the x quadrature.
- Gaussian prior distribution $p(\alpha) = \frac{1}{\sqrt{2\pi\bar{n}}}e^{-\alpha^2/2\bar{n}}$.
- $\bar{n} \ll$ 1- average number of photons per channel use weak power regime.
- Thermal channel : $\rho_{\bar{N}_{\rm th}}$ - thermal state with average number of photons $\bar{N}_{\rm th}$, η transmission.

くロト (過) (目) (日)

- Send coherent states |α⟩ = D(α)|0⟩ → encoding in the x quadrature.
- Gaussian prior distribution $p(\alpha) = \frac{1}{\sqrt{2\pi\bar{n}}}e^{-\alpha^2/2\bar{n}}$.
- $\bar{n} \ll$ 1- average number of photons per channel use weak power regime.
- Thermal channel : $\rho_{\bar{N}_{\rm th}}$ - thermal state with average number of photons $\bar{N}_{\rm th}$, η transmission.

• Output state $\rho_{\alpha} = D(\sqrt{\eta}\alpha)\rho_{(1-\eta)\bar{N}_{\text{th}}}D^{\dagger}(\sqrt{\eta}\alpha).$

・ロト ・四ト ・ヨト ・ヨト

- Send coherent states |α⟩ = D(α)|0⟩ → encoding in the x quadrature.
- Gaussian prior distribution $p(\alpha) = \frac{1}{\sqrt{2\pi\bar{n}}}e^{-\alpha^2/2\bar{n}}$.
- $\bar{n} \ll$ 1- average number of photons per channel use weak power regime.
- Thermal channel : $\rho_{\bar{N}_{\rm th}}$ - thermal state with average number of photons $\bar{N}_{\rm th}$, η transmission.

$$J = 2\eta \ln rac{1+(1-\eta)ar{N}_{ ext{th}}}{(1-\eta)ar{N}_{ ext{th}}}, \quad F_Q = rac{4\eta}{1+2(1-\eta)ar{N}_{ ext{th}}}$$

・ロト ・四ト ・ヨト ・ヨト

 $|\alpha\rangle$

- Send coherent states |α⟩ = D(α)|0⟩ → encoding in the x quadrature.
- Gaussian prior distribution $p(\alpha) = \frac{1}{\sqrt{2\pi\bar{n}}}e^{-\alpha^2/2\bar{n}}$.
- $\bar{n} \ll$ 1- average number of photons per channel use weak power regime.
- Thermal channel : $\rho_{\bar{N}_{\rm th}}$ - thermal state with average number of photons $\bar{N}_{\rm th}$, η transmission.

$$J = 2\eta \ln \frac{1 + (1 - \eta)\bar{N}_{\text{th}}}{(1 - \eta)\bar{N}_{\text{th}}}, \quad F_Q = \frac{4\eta}{1 + 2(1 - \eta)\bar{N}_{\text{th}}}$$

• Thermal environment $\chi \approx \eta \bar{n} \log_2 \frac{1+(1-\eta)\bar{N}_{\text{th}}}{(1-\eta)\bar{N}_{\text{th}}}$.

ヘロン 人間 とくほ とくほ とう

= 990

 $|\alpha\rangle$

- Send coherent states |α⟩ = D(α)|0⟩ → encoding in the x quadrature.
- Gaussian prior distribution $p(\alpha) = \frac{1}{\sqrt{2\pi\bar{n}}}e^{-\alpha^2/2\bar{n}}$.
- $\bar{n} \ll$ 1- average number of photons per channel use weak power regime.
- Thermal channel : $\rho_{\bar{N}_{\rm th}}$ - thermal state with average number of photons $\bar{N}_{\rm th}$, η transmission.

$$J = 2\eta \ln rac{1+(1-\eta)ar{N}_{ ext{th}}}{(1-\eta)ar{N}_{ ext{th}}}, \quad F_Q = rac{4\eta}{1+2(1-\eta)ar{N}_{ ext{th}}}$$

- Thermal environment $\chi \approx \eta \bar{n} \log_2 \frac{1+(1-\eta)\bar{N}_{\text{th}}}{(1-\eta)\bar{N}_{\text{th}}}$.
- Lossy environment ($\bar{N}_{\rm th} = 0$) $\chi \approx \eta \bar{n} \log_2 \frac{e}{\eta \bar{n}}$.

 $|\alpha\rangle$

э

n
 = 0.01, red N
 _{th} = 0.1, black N
 _{th} = 1, solid - exact results, dashed - approximate results.

- n
 = 0.01, red N
 _{th} = 0.1, black N
 _{th} = 1, solid exact results, dashed approximate results.
- Inset convergence of the approximation: *N*_{th} = 0, η = 0.9 dotted; *N*_{th} = 0.1, η = 0.5 red; *N*_{th} = 1, η = 0.99 black, solid.

Conclusions

Marcin Jarzyna Relationship between communication and quantum metrology

イロン イロン イヨン イヨン

æ

• Estimation theory may be used to get insight into communication.

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

ъ

- Estimation theory may be used to get insight into communication.
- Input and output superadditivity in communication and estimation are connected.

ヘロト ヘ戸ト ヘヨト ヘヨト

- Estimation theory may be used to get insight into communication.
- Input and output superadditivity in communication and estimation are connected.
- Can we extend these results to more complicated situations (phase noise etc.)?

イロト イポト イヨト イヨト

- Estimation theory may be used to get insight into communication.
- Input and output superadditivity in communication and estimation are connected.
- Can we extend these results to more complicated situations (phase noise etc.)?
- Sending different symbols multiparameter estimation?

米間 とくほとくほど

- Estimation theory may be used to get insight into communication.
- Input and output superadditivity in communication and estimation are connected.
- Can we extend these results to more complicated situations (phase noise etc.)?
- Sending different symbols multiparameter estimation?

Thank You!

米間 とくほとくほど