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Communication Theory

@ We want to send a message over some noisy channel.

p(x), X ==Y

p(ylr)

@ Performance of communication is given by rate R = lim,_, . %

@ n - number of physical channel uses, k - number of transmitted
bits in n channel uses.
@ Rate may be calculated easily as mutual information

I(X,Y) = H(X) — H(X|Y) = H(Y) — H(Y|X)

Marcin Jarzyna Relationship between communication and quantum metrology



Communication Theory

@ We want to send a message over some noisy channel.

p(x), X ==Y

p(ylr)

@ Performance of communication is given by rate R = lim,_, . %

@ n - number of physical channel uses, k - number of transmitted
bits in n channel uses.

@ Rate may be calculated easily as mutual information

I(X,Y) = H(X) — H(X|Y) = H(Y) — H(Y|X)

@ H(Y)= -3, p(y)log, p(y) - Shannon entropy.
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Communication Theory

@ We want to send a message over some noisy channel.

p(x), X ==Y

p(ylr)

Performance of communication is given by rate R = lim,_, %

n - number of physical channel uses, k - number of transmitted
bits in n channel uses.

Rate may be calculated easily as mutual information

I(X,Y) = H(X) — H(X|Y) = H(Y) — H(Y|X)

H(Y) = -3, p(y)log, p(y) - Shannon entropy.
H(Y|X) = =32, p(x) >, p(y|x)log, p(y|x) - conditional entropy.
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Communication Theory - Quantum

@ Physical situations — information carrier in state px and
measurement I1,,.
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Communication Theory - Quantum

@ Physical situations — information carrier in state px and
measurement I1,,.
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Communication Theory - Quantum

@ Physical situations — information carrier in state px and
measurement I1,,.

A ps,

T1—Pa; A Pz} [Ty )
Al[pa,

X9 Pus A pz:] HY)“ Y2

. . Al . .
e (po)— A e EY}M Yr
@ Conditional probability p(y|x) = Tr(A [px] My).
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Communication Theory - Quantum

@ Physical situations — information carrier in state px and
measurement I1,,.

A ps,
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: : - : :
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@ Conditional probability p(y|x) = Tr(A [px] My).
@ Accessible information: C('"") = maxn , I(X, Y)
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Communication Theory - Quantum

@ Physical situations — information carrier in state px and
measurement I1,,.

A ps,

T1—Pa; A Pz} [Ty )
Al[pa,

X9 Pus A pz:] HY)“ Y2

. . Al . .
e (po)— A e EY}M Yr
@ Conditional probability p(y|x) = Tr(A [px] My).

@ Accessible information: C('"") = maxn , I(X, Y)
@ Holevo bound
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Communication Theory - Quantum

@ Physical situations — information carrier in state px and
measurement I1,,.

A ps,

T1—Pa; A Pz} [Ty )
Al[pa,

X9 Pus A pz:] HY)“ Y2

. . Al . .
e (po)— A e EY}M Yr
@ Conditional probability p(y|x) = Tr(A [px] My).

@ Accessible information: C('"") = maxn , I(X, Y)
@ Holevo bound

ciN<y=8 (/ dxp(x)px> - /dXP(X)S(Px)
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@ General scheme
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Superadditivity

@ General scheme

A pa,
T1—(Pr ) — A po
Alps,
x2 Py A [[) ] Hk yk
. . Y
. Alp,

@ Output superadditivity: C(11) < ¢(1:4),
c(hh = maxp [(X, Y¥)/k.
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@ Output superadditivity: C(11) < C(1:k),
c(hh = maxp [(X, Y¥)/k.
@ Holevo limit saturable for long messages
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Superadditivity

@ General scheme

A pa,
T1—(Pr ) — A po
Alps,
x2 Py A [[) ] Hk yk
. . Y
. Alp,

@ Output superadditivity: C(11) < C(1:k),
c(hh = maxp [(X, Y¥)/k.
@ Holevo limit saturable for long messages
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Superadditivity

@ General scheme

I A
X2 A k
. : [y Yy
Tk A

@ Output superadditivity: C(11) < C(1:k),
c(hh = maxp [(X, Y¥)/k.
@ Holevo limit saturable for long messages

@ Input superadditivity: use entangled states —
Clk0) > ¢(1:20) (Hastings, Nat. Phys. (2009)).
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Estimation Theory

@ We want to measure some parameter x with the best possible
precision Ax2 = [ p(y|x)(X(y) — x)2dy.
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@ We want to measure some parameter x with the best possible
precision Ax2 = [ p(y|x)(X(y) — x)2dy.
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Estimation Theory

@ We want to measure some parameter x with the best possible

precision Ax2 = [ p(y|x)(X(y) — x)2dy.
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[¥)
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Ay

Pz

Ay

HY Yk

@ Conditional probability p(y|x) = Tr(pxy), estimator X(y).
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Estimation Theory

@ We want to measure some parameter x with the best possible

precision Ax2 = [ p(y|x)(X(y) — x)2dy.

[¥)

[¥)

Pz

Ay

Pz

Ay

HY Yk

@ Conditional probability p(y|x) = Tr(pxy), estimator X(y).
@ What is the best precision?
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Estimation Theory

@ We want to measure some parameter x with the best possible
precision Ax2 = [ p(y|x)(X(y) — x)2dy.

DA T

[¥) A, P Iy Yk

@ Conditional probability p(y|x) = Tr(pxy), estimator X(y).
@ What is the best precision?
@ Cramer-Rao inequality, Fisher information

1 _ 1 (dp(y|x)\?
KF(x)’ F(X)_/ v p(yIX)< dx )

AX >
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Estimation Theory

@ We want to measure some parameter x with the best possible
precision Ax2 = [ p(y|x)(X(y) — x)2dy.

DA T

[¥) A, P Iy Yk

@ Conditional probability p(y|x) = Tr(pxy), estimator X(y).
@ What is the best precision?
@ Cramer-Rao inequality, Fisher information

1 _ 1 (dp(y|x)\?
VKF(x)’ F(X)_/ v p(yIX)< dx )

AX >

@ Bound on precision optimized over all unbiased estimators.
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Estimation Theory - Quantum

@ What is the best precision?
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Estimation Theory - Quantum

@ What is the best precision? — Optimize over measurements.
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Estimation Theory - Quantum

@ What is the best precision? — Optimize over measurements.

|¥) A, P @""yl
[¥) A, P @N‘ykz
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Estimation Theory - Quantum

@ What is the best precision? — Optimize over measurements.

|¥) A, P @N‘w
[¥) A, P @N‘ykz

@ Quantum Cramer-Rao inequality

1
Ax >

~ VkFa(x)
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Estimation Theory - Quantum

@ What is the best precision? — Optimize over measurements.

|¥) A, P @""yl
[¥) A, P @N‘ykz

@ Quantum Cramer-Rao inequality

1
Ax >

~ VkFa(x)

Fa(x) = Tr (pxL2) - quantum Fisher information (QFI),
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Estimation Theory - Quantum

@ What is the best precision? — Optimize over measurements.

|¥) A, P @N‘w
[¥) A, P @N‘ykz

@ Quantum Cramer-Rao inequality

1
AX > ——

V kFa(x)
Fa(x) = Tr (pxL2) - quantum Fisher information (QFI), L -

symmetric logarithmic derivative ‘fj’jj = % (pxLx + Lxpx)-
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Estimation Theory - Quantum

@ What is the best precision? — Optimize over measurements.

v )—A, L

I8 fmy”

v A, L

@ Quantum Cramer-Rao inequality

Ax>
VRl
Fa(x) = Tr (pxL2) - quantum Fisher information (QFI), L -
symmetric logarithmic derivative ‘fj’jj = % (pxLx + Lxpx)-
@ No output superadditivity F5"" = F$, where
FOK = Folpf*)/k.
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Estimation Theory - Quantum

@ What is the best precision? — Optimize over measurements.
e

|vr) pi 1% v

A,

@ Quantum Cramer-Rao inequality

1
= ko)

Fa(x) = Tr (pxL2) - quantum Fisher information (QFI), L -
symmetric logarithmic derivative ‘fj’jj = % (pxLx + Lxpx)-

@ No output superadditivity F5"" = F$, where
FOK — Folp$¥)/k.

@ Input superadditivity F(k:k) > F(1.1),
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Communication vs. Estimation
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Communication vs. Estimation

Communication = Estimation?
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Communication vs. Estimation
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Communication vs. Estimation

@ Compare schemes:

Communication

A py
x@A[p]Hyy

Estimation

A A [|9)]
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Communication vs. Estimation

@ Compare schemes:

Communication

A lpa
r—E— Ay

Estimation

A A [|9)]

[¥)

@ Inferring x from the measurement results.
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Communication vs. Estimation

@ Compare schemes:

Communication

N Aps]
OOy

Estimation

m A A [l9)]

@ Inferring x from the measurement results.

@ x encoded in seed state |¢)) by channel ey.
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Communication vs. Estimation

@ Compare schemes:

Communication

N Aps]
OOy

Estimation

m A A [l9)]

@ Inferring x from the measurement results.

@ x encoded in seed state |¢)) by channel ey.
@ Substitute Ao ey — Ayx.
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Communication vs. Estimation

@ Compare schemes:

Communication

|¥) Aljj A lpe Iy y
Estimation

) A2l ey

@ Inferring x from the measurement results.
@ x encoded in seed state |¢)) by channel ey.
@ Substitute Ao ey — Ayx.

@ Communication ~ estimation.
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Classical Case - Weak Estimation Limit
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Classical Case - Weak Estimation Limit

@ Variance of prior - 02, expected value - X.
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@ Variance of prior - 02, expected value - X.
@ Narrow prior distribution 02 < 1.
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Classical Case - Weak Estimation Limit

@ Variance of prior - 02, expected value - X.
@ Narrow prior distribution 02 < 1.

o p(yIX) ~ p(y[%) + b(y[X)(x — %) + EFLp(y|X)
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Classical Case - Weak Estimation Limit

@ Variance of prior - 02, expected value - X.
@ Narrow prior distribution 02 < 1.

o p(y|x) = p(y|X) + pyIX)(x — X) + CFLp(y|%)
° p(y) ~ ply|X) + ZP(YIX)
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Classical Case - Weak Estimation Limit

@ Variance of prior - 02, expected value - X.
@ Narrow prior distribution 02 < 1.

- . — — —_%X)2 .. -
® p(yIx) ~ p(yIX) + p(yIX)(x — X) + E5Lp(y[X)

° p(y) ~ p(y|X) + Zb(yIX)
@ Assume o2 < 1/F(X)
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Classical Case - Weak Estimation Limit

@ Variance of prior - 02, expected value - X.
@ Narrow prior distribution 02 < 1.

o p(yIX) ~ p(y[%) + b(y[X)(x — %) + EFLp(y|X)

® py) ~ ply|x) + ZB(YIX)
@ Assume o2 < 1/F(X)
@ Mutual information
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Classical Case - Weak Estimation Limit

@ Variance of prior - 02, expected value - X.

@ Narrow prior distribution 02 < 1.

o p(ylx) ~ p(yIX) + plyIX)(x - %) + “FLp(yI%)
® p(y) ~ p(yIX) + S P(yIX)

@ Assume o2 < 1/F(X)

@ Mutual information

o2

I(X,Y)~ T

F(X)

@ Expansion of relative entropy D (p(y|x)||p(y|x + 6x)) ~ £ 6x2,

D(pl|q) = [ p(x)log 2 dx.
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Classical Case - Weak Estimation Limit

@ Variance of prior - 02, expected value - X.

@ Narrow prior distribution 02 < 1.

o p(ylx) ~ p(yIX) + plyIX)(x - %) + “FLp(yI%)
® ply) ~ p(yIX) + FB(yIX)

@ Assume o2 < 1/F(X)

@ Mutual information

o2

I(X,Y)~ 2In2F()_()

@ Expansion of relative entropy D (p(y|x)||p(y|x + 6x)) ~ £ 6x2,

D(pl|q) = [ p(x) Iog@dx
@ I(X,Y) = [ p(x)D(p(y|x)|lp(y))dy
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@ We want to know Holevo quantity y
o Obvious: maximize Fisher information C(""1) ~ 22, F(X).
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@ We want to know Holevo quantity y
o Obvious: maximize Fisher information C(""1) ~ 22, F(X).
@ Narrow prior distribution o2 < 1
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@ We want to know Holevo quantity y
o Obvious: maximize Fisher information C(""1) ~ 22, F(X).
@ Narrow prior distribution o2 < 1

(=% 5

px = px + (X — X)px + 5 Px
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@ We want to know Holevo quantity y
o Obvious: maximize Fisher information C(""1) ~ 22, F(X).
@ Narrow prior distribution o2 < 1
px & px + (X — X)px + (XEx)zﬁx
@ Use perturbation theory in x = S([ p(x)px) — | pP(X)S(px)-
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@ We want to know Holevo quantity y
@ Obvious: maximize Fisher information C('"1) & L2 F(X).
@ Narrow prior distribution o2 < 1
px ~ px+ (X — X)px + BT g
@ Use perturbation theory i |n x = S([ p(x)px) — [ p(x)S(px)-
@ Holevo quantity
- > 4 log

2 4e
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@ We want to know Holevo quantity y
@ Obvious: maximize Fisher information C('"1) & L2 F(X).
@ Narrow prior distribution o2 < 1
px ~ px+ (X — X)px + BT g
@ Use perturbation theory i |n x = S([ p(x)px) — [ p(x)S(px)-
@ Holevo quantity
- > 4 log

2 4e

o J(x) - relative entropy QFI D(px||pxsax) ~ J(x) %
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@ We want to know Holevo quantity y
@ Obvious: maximize Fisher information C('"1) & L2 F(X).
@ Narrow prior distribution o2 < 1
px ~ px+ (X — X)px + BT g
Use perturbation theory i |n x = S([ p(x)px) — [ p(x)S(px)-
Holevo quantity

- > 4 log

2 4e

J(x) - relative entropy QFIl D(px||pxrax) = J(x)dTXZ.
Fn(Xx) = (n|LzxpxLx|n) - n-th component of QFI.
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@ We want to know Holevo quantity y
@ Obvious: maximize Fisher information C('"1) & L2 F(X).
@ Narrow prior distribution o2 < 1
px ~ px+ (X — X)px + BT g
Use perturbation theory i |n x = S([ p(x)px) — [ p(x)S(px)-
Holevo quantity

- > 4 log

2 4e

J(x) - relative entropy QFIl D(px||pxrax) = J(x)dTXZ.
Fn(Xx) = (n|LzxpxLx|n) - n-th component of QFI.
r - rank of px, |n) - eigenvector of jx in the kernel of px.
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@ We want to know Holevo quantity y
@ Obvious: maximize Fisher information C('"1) & L2 F(X).
@ Narrow prior distribution o2 < 1
px ~ px+ (X — X)px + BT g
Use perturbation theory i |n x = S([ p(x)px) — [ p(x)S(px)-
Holevo quantity

- > 4 log

2 4e

J(x) - relative entropy QFIl D(px||pxrax) = J(x)dTXZ.
Fn(Xx) = (n|LzxpxLx|n) - n-th component of QFI.
r - rank of px, |n) - eigenvector of jx in the kernel of px.

2F (% o [
Pure states — y ~ — 2 jog, Fal),
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@ We want to know Holevo quantity y
@ Obvious: maximize Fisher information C('"1) & L2 F(X).
@ Narrow prior distribution o2 < 1
px ~ px+ (X — X)px + BT g
@ Use perturbation theory i |n x = S([ p(x)px) — [ p(x)S(px)-
@ Holevo quantity
- > 4 log

2 4e

J(x) - relative entropy QFIl D(px||pxrax) = J(x)dTXZ.
Fn(Xx) = (n|LzxpxLx|n) - n-th component of QFI.
r - rank of px, |n) - eigenvector of jx in the kernel of px.

Pure states — y ~ —Z FO(X) log, < FO( ) mixed states —
_ d%J(x)
- 2In2 -
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Superadditivity
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Superadditivity

Output superadditivity:
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Superadditivity

Output superadditivity:
@ In general J(x) > Fg(x).

Marcin Jarzyna Relationship between communication and quantum metrology



Superadditivity

Output superadditivity:
@ In general J(x) > Fg(x).
@ For mixed output states

_ x JX
7000 T Fe(x)

> 1
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Superadditivity

Output superadditivity:
@ In general J(x) > Fg(x).
@ For mixed output states

_ x JX
7= Cn T Fo®)

> 1

@ For pure output states

X In2 azFQ()_() 0250
V=i T T 0% - = X
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Superadditivity

Output superadditivity:
@ In general J(x) > Fg(x).
@ For mixed output states

_ x JX
7= Cn T Fo®)

> 1

@ For pure output states

~_x _ In2 o2 Fq(X) 0220
TEoEn T g % g T

Input superadditivity:
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Superadditivity

Output superadditivity:
@ In general J(x) > Fg(x).
@ For mixed output states

_ x JX
TTCEN T Fo(x)

> 1

@ For pure output states

~_x _ In2 02 Fg(X) 0250
TEoEn T g % g T
Input superadditivity:
@ Recall: Superadditivity of QFI and REQFI.
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Superadditivity

Output superadditivity:
@ In general J(x) > Fg(x).
@ For mixed output states

_ x JX
TTCEN T Fo(x)

> 1

@ For pure output states

~_x _ In2 o2 Fq(X) 0220
TEoEn T g % g T

Input superadditivity:
@ Recall: Superadditivity of QFI and REQFI.

, . Clkoo) (ko)
® Mixed states: L=y = Jrxy = 1
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Superadditivity

Output superadditivity:
@ In general J(x) > Fg(x).
@ For mixed output states

_ x JX
TTCEN T Fo(x)

> 1

@ For pure output states

~_x _ In2 02 Fg(X) 0250
TEoEn T g % g T
Input superadditivity:
@ Recall: Superadditivity of QFI and REQFI.

, . Clkoo) (ko)
® Mixed states: L=y = Jrxy = 1

@ Pure states: F(k) > Fi.o0) — Clk:o0) > C(100),
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Superadditivity

Output superadditivity:
@ In general J(x) > Fg(x).
@ For mixed output states

_ x JX
7= Cn T Fo®)

> 1

@ For pure output states

~_x _ In2 02 Fg(X) 0250
TEoEn T g % g T
Input superadditivity:
@ Recall: Superadditivity of QFI and REQFI.
@ Mixed states: % = % >1
@ Pure states: F(k0) > F(1.00) 5 C(koo) > O(1:00),
@ Warning: Do not increase k to much! 02 < 1/F(X)
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Thermal Channel
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Thermal Channel

@ Send coherent states |a) = D(«)|0) — encoding in the x
quadrature.
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Thermal Channel

@ Send coherent states |a) = D(«)|0) — encoding in the x
quadrature.
1

@ Gaussian prior distribution p(a) = ﬁe—az/%.
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Thermal Channel

@ Send coherent states |a) = D(«)|0) — encoding in the x
quadrature.

@ Gaussian prior distribution p(a) = \/ﬁe—az/%.

@ n <« 1- average number of photons per channel use - weak
power regime.
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Thermal Channel

@ Send coherent states |a) = D(«)|0) — encoding in the x
quadrature.

@ Gaussian prior distribution p(a) = \/ﬁe—az/%.

@ n <« 1- average number of photons per channel use - weak
power regime.

@ Thermal channel : PNen
Py, - thermal state with |a) Pa
average number of
photons Ny, 7 - Ui

transmission.
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Thermal Channel

@ Send coherent states |a) = D(«)|0) — encoding in the x
quadrature.

@ Gaussian prior distribution p(a) = \/ﬁe—az/%.

@ n <« 1- average number of photons per channel use - weak
power regime.

@ Thermal channel : PNen
Py, - thermal state with |a) Pa
average number of
photons Ny, 7 - Ui

transmission.
@ Output state po, = D(\/7)p(1 _ &, DT (v/710).-
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Thermal Channel

Send coherent states |a) = D(«)|0) — encoding in the x
quadrature.
Gaussian prior distribution p(«) = \/ﬁe—az/%_

n < 1- average number of photons per channel use - weak
power regime.

Thermal channel : PNen

PR, - thermal state with |a) Pa
average number of

photons N, 7 - Ui

transmission.
Output state po = D(\/7c)p1_ i, DT (v/710).-

1+( _U)Nth F 4n

J=2nln = , -
(1 — )N T 1201 — )N
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Thermal Channel

Send coherent states |a) = D(«)|0) — encoding in the x
quadrature.

Gaussian prior distribution p(a) = \/ﬁe—az/‘?ﬁ.

n < 1- average number of photons per channel use - weak
power regime.

Thermal channel : PNen

Py, - thermal state with |a) Pa
average number of

photons Ny, 7 - Ui

transmission.

Output state po = D(\/7c)p1_ i, DT (v/710).-
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(1 =) Nin 1+2(1 —n)Na
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Thermal Channel

Send coherent states |a) = D(«)|0) — encoding in the x
quadrature.

Gaussian prior distribution p(a) = \/ﬁe—az/‘?ﬁ.

n < 1- average number of photons per channel use - weak
power regime.

Thermal channel : PNen

Py, - thermal state with |a) Pa
average number of

photons Ny, 7 - Ui

transmission.
Output state po = D(\/7c)p1_ i, DT (v/710).-

LI U)o 41

(A =nNp ’ 1+2(1 —n)Nn
1+(17,’7_)Nlh

(1=)No -~

Lossy environment (N, = 0) x ~ nfilog, -%.

J=2nln

Thermal environment x ~ nnlog,
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Thermal Channel
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Thermal Channel
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@ n=0.01,red Ny, = 0.1, black N, = 1, solid - exact results,
dashed - approximate results.
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Thermal Channel

3.5

3.0

2.5

NNN00OWOO
10010010010

X/Xapr
0000000

=~

—4
20 104 0001 00L 0.1

1.5

1.0= : ‘ ‘ ‘ ‘
0.0 0.2 04 0.6 0.8 10

n

@ n=0.01, red Ny, = 0.1, black N, = 1, solid - exact results,
dashed - approximate results.

@ Inset - convergence of the approximation: Nyp=0,7=09-
dotted; N, = 0.1, n = 0.5 - red; Ny, = 1,  =0.99 - black, solid.
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Conclusions

@ Estimation theory may be used to get insight into
communication.

@ Input and output superadditivity in communication and
estimation are connected.

@ Can we extend these results to more complicated
situations (phase noise etc.)?

@ Sending different symbols - multiparameter estimation?

Thank You!
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