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What metrology improvements can we achieve 
with incoherent light and photodetection?

• Quantum metrology is typically presented in terms of 
highly coherent quantum states, such as NOON states. 

• Such states are susceptible to noise, and typically very 
difficult to make. 

• Can we get metrological (quantum) improvements with 
incoherent light?



Considerations for incoherent sources

• Thermal sources and single-photon sources. 

• Mode shapes and coherence properties become crucial. 



We present a few examples of  
imaging and metrology with incoherent light:

• Resolution beyond the Abbe limit 
from intensity correlations; 

• optical thermometry via intensity 
measurements; 

• single-photon metrology probes.



Photon correlations in multiple detectors 
increase the resolution beyond Abbe limit.

Measure light intensity in 
N detectors placed at 
very particular positions, 
the so-called magic 
angles. 

Coincidence counts 
change as we sweep 
detector 1 through a 
range of angles.

Oppel et al., Phys. Rev. Lett. 109, 233609 (2012).



The experimental setup: 

Note that the angular range AN ¼ sin½ð!N $ !2Þ=2&
required by all N detectors for N > 2 TLS is larger than
the aperture A needed for detector D1 alone. For a slit
separation of d ¼ "=2, this is shown in Fig. 2. However,
one can see from the figure that AN always remains
smaller than the aperture associated with the classical
Abbe limit. Moreover, there is some flexibility in placing
the N $ 1 fixed detectors, for example, besides or behind
the investigated object (assuming 4# emission), since the
required values for the relative phase relations of the magic
positions are valid modulo 2#. The dotted red curve rep-
resenting AN ¼ sin½ð!N $ !2Þ=2& in Fig. 2(b) does not
take into account this flexibility.

The experimental setup used to measure gðNÞ
TLSð$1Þ with

up to N ¼ 5 is shown in Fig. 3. To realize the N indepen-
dent TLS, opaque masks with N identical slits of width
a ¼ 25 %m and separation d ¼ 250 %m are illuminated
by pseudothermal light originating from a linearly polar-
ized frequency-doubled Nd:YAG laser at " ¼ 532 nm
scattered by a rotating ground glass disk [30]. The large
number of time-dependent speckles, produced by the sto-
chastically interfering waves scattered from the granular

surface of the disk, acts within a given slit as many inde-
pendent pointlike subsources equivalent to an ordinary
spatial incoherent thermal source [31]. To prove the ther-
mal statistics of the TLS we measured the autocorrelation

function gð2Þð&Þ and verified that gð2Þð& ¼ 0Þ ¼ 2:00ð5Þ
[13]. The coherence time of the pseudothermal light
sources depends on the rotational speed of the disk [31]
and was chosen to &c ' 100 %s so that a commercial
coincident detection circuit could be used. The light from
the masks is split by 50=50 nonpolarizing beam splitters
and collected at a distance z ' 1 m behind the glass disk
by N laterally displaceable fiber tips of core diameter
50 %m, guiding the light to N single photon detectors.
The output pulses of the photon detectors are then fed
into a coincidence detection circuit. In the experiment the

single photon counting rates for gð2ÞTLS, g
ð3Þ
TLS, g

ð4Þ
TLS, and g

ð5Þ
TLS

correspond typically to 100–350 kHz. With joint detection
time windows of 50, 410, 410, and 850 ns (ensuring the
single photon counting regime) and taking into account the
thermal photon statistics as well as varying quantum effi-
ciencies of the different detectors, this leads to averaged
N-fold coincidence rates of 1500, 1500, 400, and 300 Hz,

respectively. Note that the gðNÞ
TLSð$1Þ display the calculated

interference signals only if the N photons are measured
within their coherence time [13].

The experimental results for gð2ÞTLSð$1Þ; . . . ; gð5ÞTLSð$1Þ are
shown in Fig. 4. The measured curves are in excellent
agreement with the theoretical prediction if one takes into
account the finite width of the slits [see red solid lines in
Figs. 1 and 4(b)–4(e) ]. The small deviations between the

experimental results and the theoretical curves for gð4ÞTLS and

gð5ÞTLS are mostly due to a slight misalignment of the detector
positions from the required magic values. The deviations

between VðeÞ
N and VN towards higher N are mainly due to

increased dead time effects arising from larger joint

FIG. 2 (color online). (a) gð4ÞTLSð$1Þ for N ¼ 4 independent TLS
(solid blue curve) with detectors D2, D3, and D4 at the magic
angles $2 ¼ $#, $3 ¼ $#=3, $4 ¼ þ#=3, and Gð1Þð$1 þ #Þ
for a coherently illuminated grating with N ¼ 4 slits (dashed
black curve) in the case of a source or slit separation d ¼ "=2.
The angular range required by detectorD1 to scan from one to the

next principal maximum is indicated for gð4ÞTLSð$1Þ by a horizontal
solid blue arrow and for Gð1Þð$1 þ #Þ by a horizontal dashed
black arrow. The latter is the angular range required by the
classical Abbe limit. (b) Numerical apertures required by the
classical Abbe limit (dashed black curve), and by the proposed
scheme for detector D1 alone (solid blue curve) and for all N
detectors (dotted red curve) to obtain structural information about
a grating with N slits and slit separation d ¼ "=2.

FIG. 3 (color online). Experimental setup for measuring

gðNÞ
TLSð$1Þ. For details, see the text. GGD, ground glass disk; M,

mirror; L, lens; NDF, neutral density filter; TS, translation stage
with fiber mount; BS, beam splitter; F, multimode fiber;
D1 . . .D5, photomultiplier modules.
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The modulation scales 
with N – 1, where N is 
the number of detectors. 
This allows us to 
measure the distance d 
between the sources 
with increased precision.

Oppel et al., Phys. Rev. Lett. 109, 233609 (2012).

Photon correlations in multiple detectors 
increase the resolution beyond Abbe limit.



We can beat the Abbe limit using 
higher-order photon correlations.

Oppel et al., Phys. Rev. Lett. 109, 233609 (2012).

• Classically, the resolution limit is given by  

• With M the number of fringes, we can calculate the 
resolution limit as

Superresolving Multiphoton Interferences with Independent Light Sources

S. Oppel,1,2 T. Büttner,1 P. Kok,3 and J. von Zanthier1,2,*
1Institut für Optik, Information und Photonik, Universität Erlangen-Nürnberg, 91058 Erlangen, Germany

2Erlangen Graduate School in Advanced Optical Technologies (SAOT), Universität Erlangen-Nürnberg, 91052 Erlangen, Germany
3Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, United Kingdom

(Received 18 May 2012; published 4 December 2012)

We propose to use multiphoton interferences from statistically independent light sources in combina-

tion with linear optical detection techniques to enhance the resolution in imaging. Experimental results

with up to five independent thermal light sources confirm this approach to improve the spatial resolution.
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Multiphoton interferences with indistinguishable pho-
tons from statistically independent light sources are at the
focus of current research owing to their potential in quan-
tum information processing [1,2], creating remote entan-
glement [3,4], and metrology [5–7]. The paradigmatic
states for multiphoton interference are the highly entangled
NOON states [8], which can be used to achieve increased
resolution in spectroscopy, lithography, and interfero-
metry [8–12]. However, multiphoton interferences from
statistically independent emitters—either nonclassical or
classical—can also lead to enhanced resolution in metrol-
ogy and imaging [10,13–15]. So far, such interferences have
been observed with maximally two independent emitters
[10,16–26]. Here, we propose to use multiphoton interfer-
ences in a configuration that can be implemented with both
classical and nonclassical independent sources to obtain
spatial interference patterns equivalent to those of NOON
states. Our scheme is an extension of the theoretical pro-
posal of Ref. [15], which uses a different detection scheme
and requires nonclassical sources. Experimental results
with up to five independent thermal light sources confirm
our approach to enhance the spatial resolution in imaging.

In the case of NOON states, the N-photon interference
pattern can be written as [8]

INðxÞ /
1

2
½1þ VN cosðNkxÞ%; (1)

where N is the number of photons participating in the
NOON state, VN is the visibility, k is the difference vector
between the wave vector k1 and k2 of the interfering light
fields, and x is the position along the observation screen.
An N-photon spatial interference pattern as in Eq. (1) can
be used to enhance the resolution in interferometry and
imaging. As known from Abbe, an image of an object is
formed if the rays contributing to adjacent diffraction
orders (e.g., 0, þ1) in the diffraction plane are captured
by the aperture A of the imaging device, since then all
information of the object is contained in the diffraction
pattern via Fourier transform [27]. For a grating with N

slits and slit spacing d, this leads to a minimal resolvable
slit separation dmin ¼ !=ð2AÞ, with an error !dmin ¼
!=ð4AÞ [27]. This limit can be overcome if the slowly
oscillating terms in the diffraction pattern of the grating
I / 1þ 2

N

PN'1
"¼1ðN ' "Þ cosð"#Þ with # ¼ kd sin$ are

suppressed such that only the modulation at the highest
frequency cos½ðN ' 1Þ#% prevails, containing all relevant
parameters of the grating (N and d). Based on counting the
number of peaks M across A in the NOON-like interfer-
ence pattern 1þ VN cos½ðN ' 1Þ#%, we obtain 2%M ¼
2AðN ' 1Þkd. From this, assuming a signal to noise ratio
such that !M< 1=2, we derive the slit separation d and
its error !d as

d ¼ M!

2AðN ' 1Þ ;

!d ¼ !M

!!!!!!!!
@M

@d

!!!!!!!!
'1
<

!

4AðN ' 1Þ :
(2)

According to Eq. (2), for N ' 1>M ( 1 the pattern con-
veys information about source details that are smaller than
the Abbe limit.
A superresolving N-photon interference pattern as in

Eq. (1) can be obtained with statistically independent light
sources by using linear optical detection techniques.
Consider N independent emitters at R" (" ¼ A; B; . . . )
along a chain with equal spacing d (see Fig. 1), and place
N ' 1 detectors in a semicircle in the far field around
the sources at specific magic angles which will be defined
below. The emitters are assumed to emit photons of iden-
tical frequency and polarization and may be single photon
emitters (SPE) or classical thermal light sources (TLS).
Moving another detector along the semicircle and postse-
lecting on simultaneous single photon detection events in
each of theN detectors will produce an interference pattern
IN'1 as in Eq. (1), where A is defined with respect to the
one detector which is scanned. To see this, we recall that
the N-photon interference pattern is proportional to the
(normally ordered) N-point intensity correlation function
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The aperture is determined by 
the position of the detectors.

Oppel et al., Phys. Rev. Lett. 109, 233609 (2012).

Note that the angular range AN ¼ sin½ð!N $ !2Þ=2&
required by all N detectors for N > 2 TLS is larger than
the aperture A needed for detector D1 alone. For a slit
separation of d ¼ "=2, this is shown in Fig. 2. However,
one can see from the figure that AN always remains
smaller than the aperture associated with the classical
Abbe limit. Moreover, there is some flexibility in placing
the N $ 1 fixed detectors, for example, besides or behind
the investigated object (assuming 4# emission), since the
required values for the relative phase relations of the magic
positions are valid modulo 2#. The dotted red curve rep-
resenting AN ¼ sin½ð!N $ !2Þ=2& in Fig. 2(b) does not
take into account this flexibility.

The experimental setup used to measure gðNÞ
TLSð$1Þ with

up to N ¼ 5 is shown in Fig. 3. To realize the N indepen-
dent TLS, opaque masks with N identical slits of width
a ¼ 25 %m and separation d ¼ 250 %m are illuminated
by pseudothermal light originating from a linearly polar-
ized frequency-doubled Nd:YAG laser at " ¼ 532 nm
scattered by a rotating ground glass disk [30]. The large
number of time-dependent speckles, produced by the sto-
chastically interfering waves scattered from the granular

surface of the disk, acts within a given slit as many inde-
pendent pointlike subsources equivalent to an ordinary
spatial incoherent thermal source [31]. To prove the ther-
mal statistics of the TLS we measured the autocorrelation

function gð2Þð&Þ and verified that gð2Þð& ¼ 0Þ ¼ 2:00ð5Þ
[13]. The coherence time of the pseudothermal light
sources depends on the rotational speed of the disk [31]
and was chosen to &c ' 100 %s so that a commercial
coincident detection circuit could be used. The light from
the masks is split by 50=50 nonpolarizing beam splitters
and collected at a distance z ' 1 m behind the glass disk
by N laterally displaceable fiber tips of core diameter
50 %m, guiding the light to N single photon detectors.
The output pulses of the photon detectors are then fed
into a coincidence detection circuit. In the experiment the

single photon counting rates for gð2ÞTLS, g
ð3Þ
TLS, g

ð4Þ
TLS, and g

ð5Þ
TLS

correspond typically to 100–350 kHz. With joint detection
time windows of 50, 410, 410, and 850 ns (ensuring the
single photon counting regime) and taking into account the
thermal photon statistics as well as varying quantum effi-
ciencies of the different detectors, this leads to averaged
N-fold coincidence rates of 1500, 1500, 400, and 300 Hz,

respectively. Note that the gðNÞ
TLSð$1Þ display the calculated

interference signals only if the N photons are measured
within their coherence time [13].

The experimental results for gð2ÞTLSð$1Þ; . . . ; gð5ÞTLSð$1Þ are
shown in Fig. 4. The measured curves are in excellent
agreement with the theoretical prediction if one takes into
account the finite width of the slits [see red solid lines in
Figs. 1 and 4(b)–4(e) ]. The small deviations between the

experimental results and the theoretical curves for gð4ÞTLS and

gð5ÞTLS are mostly due to a slight misalignment of the detector
positions from the required magic values. The deviations

between VðeÞ
N and VN towards higher N are mainly due to

increased dead time effects arising from larger joint

FIG. 2 (color online). (a) gð4ÞTLSð$1Þ for N ¼ 4 independent TLS
(solid blue curve) with detectors D2, D3, and D4 at the magic
angles $2 ¼ $#, $3 ¼ $#=3, $4 ¼ þ#=3, and Gð1Þð$1 þ #Þ
for a coherently illuminated grating with N ¼ 4 slits (dashed
black curve) in the case of a source or slit separation d ¼ "=2.
The angular range required by detectorD1 to scan from one to the

next principal maximum is indicated for gð4ÞTLSð$1Þ by a horizontal
solid blue arrow and for Gð1Þð$1 þ #Þ by a horizontal dashed
black arrow. The latter is the angular range required by the
classical Abbe limit. (b) Numerical apertures required by the
classical Abbe limit (dashed black curve), and by the proposed
scheme for detector D1 alone (solid blue curve) and for all N
detectors (dotted red curve) to obtain structural information about
a grating with N slits and slit separation d ¼ "=2.

FIG. 3 (color online). Experimental setup for measuring

gðNÞ
TLSð$1Þ. For details, see the text. GGD, ground glass disk; M,

mirror; L, lens; NDF, neutral density filter; TS, translation stage
with fiber mount; BS, beam splitter; F, multimode fiber;
D1 . . .D5, photomultiplier modules.
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Can we use these higher order correlations for 
increased precision in imaging?



We image the size of a disk in the far field 
using intensity correlation measurements.

Uniform circular source with radius a;  
pseudo-thermal, monochromatic light with wave number k; 
a distance d from the imaging plane.

source image

correlations



There are a number of methods for 
combining data of multiple pixels.

Pearce et al., Phys Rev A 92, 043831 (2015).

PRECISION ESTIMATION OF SOURCE DIMENSIONS . . . PHYSICAL REVIEW A 92, 043831 (2015)

FIG. 2. Measuring the higher-order intensity correlation functions with an array of pixels. (a) The second-order intensity correlation at
pixel xi = 7 is calculated as the correlation between the intensities at a fixed pixel s2 = 13 (shown as a darker pixel) and at the pixel xi = 7.
(b) and (c) The third-order correlation is defined using two detection schemes, namely via a single fixed pixel that is correlated twice (detection
scheme 1), or two fixed pixels (detection scheme 2). (d) and (e) The fourth-order intensity correlation is defined analogous to the third order.
The reference pixel separation d is a dimensionless number, and the center-to-center separation of adjacent pixels is taken as 5.3 µm throughout
the paper.

state. That is, mathematically, we can write

⟨f (â†,â)⟩ =
∫

P (α)f (α∗,α) d2α ≡ ⟨f (α∗,α)⟩P , (2)

where f is any normally ordered function of the creation and
annihilation operators, the first expectation is the quantum
mechanical average, and the subscript P on the second
expectation signifies that it is an ensemble average taken
with respect to the quasiprobability distribution P . With the
help of the optical equivalence theorem, the n-point intensity
correlation G(n)(r1, . . . ,rn) can thus be written as

〈
:
∏n

i=1â
†(ri)â(ri):

〉
=

〈∏n
i=1α

∗(ri)α(ri)
〉
P
. (3)

Thermal light exhibits a Gaussian zero mean P representation.
We can therefore apply the Gaussian moment theorem [26] and
make the simplification,

〈∏n
i=1α

∗(ri)α(ri)
〉
P

=
∑

σ∈Sn

n∏

i=1

⟨α∗(ri)α(rσ (i))⟩, (4)

where Sn is the symmetric group containing all permutations
of the set {1, . . . ,n}. This allows us to write G(n) as

G(n)(r1, . . . ,rn) = |K|2n
∑

σ∈Sn

n∏

i=1

⟨â†(ri)â(rσ (i))⟩, (5)

043831-3
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Image Data Processing

Calculate: 

• n-point correlations functions g(n) for the disk; 

• covariance matrix Cov[g(n)(x),g(n)(x’)] from g(n); 

• Fisher information In(a) from Cov[g(n)(x),g(n)(x’)]; 

• precision in the radius a from In(a).



The n-point correlation functions 
are easily calculated.

The n-point correlation function of a disk emitting 
pseudo-thermal (monochromatic) light is: 

The visibility is given by:

2

As an example, consider a monochromatic, circular source
of radius a, the far field complex degree of coherence at a
distance z = d is the 2-dimensional Fourier transform of
the circle, i.e. the function [5]

∞(1)(r1,r2)=
2J1

≥
ak|r1°r2|

d

¥

≥
ak|r1°r2|

d

¥ , (8)

where J1 is the first order Bessel function of the first kind
and k is the wavenumber. Our n-point correlation func-
tion then becomes,

g(n)(r1, . . . ,rn)=
X

æ2Sn

nY

i=1

2J1

≥
ak|ri°ræ(i)|

d

¥

≥
ak|ri°ræ(i)|

d

¥ . (9)

In general, the n-point intensity correlation function con-
tains a large number of terms due to the sum over Sn. We
can reduce this by considering certain detector arrange-
ments with high symmetry. For example, we consider the
detector set up r1 = (x,0,d), r2 = (0,0,d), . . . , rn = (0,0,d).
For this arrangement we find,

g(n)(x)= (n°1)!+ (n°1)(n°1)!

0

@
2J1

≥
ak|x|

d

¥

≥
ak|x|

d

¥

1

A

2

, (10)

where we have dropped the repeated dimensions for sim-
plicity. Since the complex degree of coherence is bounded
by °1∑ ∞(1)(x, y)∑ 1, we see directly that the visibility in-
creases with n.

V =
g(n)

max ° g(n)
min

g(n)
max + g(n)

min

= n°1
n+1

. (11)

An increase in the visibility suggests that we may be able
to access more information about the parameter a from
the higher order correlations. To prove this we calculate
the Fisher information as a function of n. The Fisher in-
formation is given by,

In(a)=
X

x

pn(x|a)
µ
@ ln[pn(x|a)]

@a

∂2
, (12)
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tions, x = x1, . . . , xM . The term pn(x|a) is the joint prob-
ability of observing all M measurements conditional on
the source radius. The signal g(n) is the expectation value
of intensity correlations. As such, in the limit of a large
data set, the central moment theorem tells us that this
signal will be a multinomial-normal distribution. For a
multinomial-normal distribution the Fisher information
is given by [8],
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where µ is the expectation values of the distribution at
each of the sampling points (g(n)(x1), . . . , g(n)(xM) in our
case) and C is the covariance matrix. In order to calculate
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Again we have dropped the 0’s from the argument for
brevity.We therefore find that the covariance matrix el-
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Fig (2) shows the Fisher information as a function of the
correlation order n. We clearly see that Fisher informa-
tion increases with n and therefore our estimates of a
should also increase. We present a figure of estimates for
increasing n that was obtained from a generated data set.
The data set was generated such that it is multivariate
normally distributed with means g(n)(x) and covariances
C. A maximum likelihood estimation was then performed
on the data set in order to achieve estimates of a for each
value of n. We see clearly that the estimates are all well
within a standard deviation and also we notice that the
standard deviation decreases with n.

±a ∏ 1
p

I(a)
. (18)

2

As an example, consider a monochromatic, circular source
of radius a, the far field complex degree of coherence at a
distance z = d is the 2-dimensional Fourier transform of
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where we have dropped the repeated dimensions for sim-
plicity. Since the complex degree of coherence is bounded
by °1∑ ∞(1)(x, y)∑ 1, we see directly that the visibility in-
creases with n.
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where µ is the expectation values of the distribution at
each of the sampling points (g(n)(x1), . . . , g(n)(xM) in our
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Fig (2) shows the Fisher information as a function of the
correlation order n. We clearly see that Fisher informa-
tion increases with n and therefore our estimates of a
should also increase. We present a figure of estimates for
increasing n that was obtained from a generated data set.
The data set was generated such that it is multivariate
normally distributed with means g(n)(x) and covariances
C. A maximum likelihood estimation was then performed
on the data set in order to achieve estimates of a for each
value of n. We see clearly that the estimates are all well
within a standard deviation and also we notice that the
standard deviation decreases with n.
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where µ is the expectation values of the distribution at
each of the sampling points (g(n)(x1), . . . , g(n)(xM) in our
case) and C is the covariance matrix. In order to calculate
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Fig (2) shows the Fisher information as a function of the
correlation order n. We clearly see that Fisher informa-
tion increases with n and therefore our estimates of a
should also increase. We present a figure of estimates for
increasing n that was obtained from a generated data set.
The data set was generated such that it is multivariate
normally distributed with means g(n)(x) and covariances
C. A maximum likelihood estimation was then performed
on the data set in order to achieve estimates of a for each
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within a standard deviation and also we notice that the
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where µ is the expectation values of the distribution at
each of the sampling points (g(n)(x1), . . . , g(n)(xM) in our
case) and C is the covariance matrix. In order to calculate
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Fig (2) shows the Fisher information as a function of the
correlation order n. We clearly see that Fisher informa-
tion increases with n and therefore our estimates of a
should also increase. We present a figure of estimates for
increasing n that was obtained from a generated data set.
The data set was generated such that it is multivariate
normally distributed with means g(n)(x) and covariances
C. A maximum likelihood estimation was then performed
on the data set in order to achieve estimates of a for each
value of n. We see clearly that the estimates are all well
within a standard deviation and also we notice that the
standard deviation decreases with n.
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(a) (c)

(b) (d)

FIG. 4. (Color online) Results of the numerical estimation of the
source diameter a (µm) and the corresponding variance (!a)2,
in comparison with the Cramér-Rao bound (CRB). Choosing the
reference pixels in a distributed manner as in Figs. 2(c) and 2(e)
leads to a CRB value of the variance as shown in (a), with the
estimate and standard deviation shown in (b). Here we have chosen a
detection efficiency ν = 0.5 with ς = 0.01. Due to the computational
complexity of the problem only correlation orders up to n = 4 have
been calculated. Choosing the central pixel as the reference pixel as
in Figs. 2(b) and 2(d) leads to a CRB value of the variance as shown
in (c), with the estimate and standard deviation shown in (d). This
configuration does not allow us to include the detector efficiency as
a random variable in the estimation procedure (see text for details).
For comparison, the numerical values in this figure are collated in
Tables II and III.

B. Detector loss as a random variable

Second, we demonstrate the effect of a small nonzero ς ,
representing a system with uncertainty in the detector loss
mechanism. The effect of this additional noise is shown
in Fig. 5, where we plot the variance of the estimator for
the second-order intensity correlation function against the
standard deviation ς . As expected, the addition of noise in
the detection process reduces the precision in our estimator.

In order to perform the estimation, first we must evaluate the
second term in Eq. (19), which is the nth moment of the noise
distribution. Having considered the case where all reference
pixels are the same in the previous section, we now restrict
ourselves to only considering cases where no two reference
pixel positions are the same, i.e., s2 ̸= s3 ̸= · · · ̸= sn, such

TABLE II. Results of the maximum likelihood estimation for the
correlation functions G(2) to G(5) and the Cramér-Rao lower bounds.
The estimation procedure was performed on 1000 simulated data sets.

n a (µm) (!a)2
Sim(µm2) (!a)2

CRB(µm2)

2 99.978 0.181 0.162
3 99.968 0.151 0.150
4 99.932 0.249 0.244
5 99.826 0.543 0.434

FIG. 5. (Color online) Variance (!a)2 of the estimator â for G(2)

against the standard deviation of the noise ς (dimensionless). Average
detector efficiencies ν = 0.2 (dashed), ν = 0.5 (dotted), and ν = 0.9
(solid).

that we can determine the effect of separating the reference
pixels. In this regime the nth moment of the noise distribution,
⟨η(xi)η(s2) . . . η(sn)⟩, is given by

⟨ηk(xi)ηk(s2) . . . ηk(sn)⟩ = νn + νn−2
n∑

j=2

δxi sj
ς2

= νn

⎛

⎝1 +
n∑

j=2

δxi sj
χ2

⎞

⎠. (26)

We therefore find it necessary to re-parametrize the problem
using the parameters θ = (a,⟨Ieff⟩,χ ) as mentioned above.
Eq. (26) represents an nth moment of the noise distribution,
and the Kronecker deltas arise from the independence of
the distribution for individual pixels. The 2nth moment of
the noise distribution appearing in Eq. (22) is calculated in
the Appendix.

In order to find the optimum position of the refer-
ence pixels, we define the dimensionless number d = |si −
si+1|, the separation between adjacent reference pixels, and
plot the standard deviation as a function of d. Figure 6
shows the standard deviation for G(2) to G(4) as a function
of d. Interestingly, the higher-order correlations outperform
G(2) only for some values of d. For G(3) we find that the
optimum positions correspond to separations where the two
reference pixels become uncorrelated. This occurs whenever
the complex degree of coherence between the two pixels
is approximately equal to zero. Since the complex degree
of coherence for the system is proportional to the Bessel
function J1, the optimum separations d correspond to the
zeros of this function. For G(4) the exact position of the
optimum is more complicated, due to the fact that the zeros
of J1 are not uniformly distributed. However, the optimum
positions are approximately located at the position where
adjacent reference pixels are uncorrelated from their nearest
neighbours. Table III shows the variance of the estimators
for the first three correlation functions as calculated from
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FIG. 6. (Color online) Standard deviation of the estimator â for
G(2) (dashed), G(3) (dotted), and G(4) (solid) as a function of reference
pixel separation d = |si − si+1| for detection scheme 2, given a
circular aperture of radius a = 100 µm. The gray vertical lines
correspond to the first and second zeros of the Bessel function J1.

the CRB and directly measured in the simulations. We see
that the measured variance in our estimators closely follows
that obtained from the CRB. The results of the maximum
likelihood estimation and the Cramér-Rao bound are given in
Table III.

Another interesting feature of Fig. 6 is the ability for G(4)

to outperform G(2), a feature that does not occur for fixed
reference pixels. This behavior is reminiscent of the “magic
angles” in Refs. [7,8], where the detectors had to be placed
at different specific positions (the magic angles) in order to
obtain the (n − 1)-fold increased sinusoidal modulation in the
scanning detector.

The exact relation between the variance of the estimators
and the correlation order also depends on the geometry of
the source. Figure 7 shows the dependence of the variance
as a function of the reference pixel separation for a slit of
width a = 200 µm. The complex degree of coherence for
such a geometry is given by the sinc function. Since the
zeros of the sinc function are uniformly distributed, it is
possible to achieve independence for all the reference pixels
simultaneously. Figure 7 shows that for the optimal choice of
d the estimator for G(4) outperforms G(2) and is about as good
as G(3).

TABLE III. Results of the maximum likelihood estimation for the
correlation functions G(2) to G(4) and the Cramér-Rao lower bounds,
with a reference pixel separation of d = 182 that corresponds to the
first zero of J1. The estimation procedure was performed on 1000
simulated data sets.

n a (µm) (!a)2
Sim(µm2) (!a)2

CRB(µm2)

2 99.976 0.194 0.175
3 99.980 0.126 0.123
4 99.957 0.169 0.157

FIG. 7. (Color online) Standard deviation of the estimator â for
G(2) (dashed), G(3) (dotted), and G(4) (solid) as a function of reference
pixel separation d = |si − si+1| for detection scheme 2, given a slit
of width a = 200 µm. The gray vertical lines correspond to the first
and second zeros of the sinc function.

VI. DISCUSSION AND CONCLUSIONS

We have discussed the exact role of higher-order intensity
correlations with respect to parameter estimation of the inten-
sity distribution of thermal sources, and demonstrated that it is
beneficial to post-process the data in such a way as to measure
intensity correlations of order n > 2. We have also shown
how the post-processing can be optimized with respect to the
placement of the reference pixels, in order to find the most
informative measurements. A major benefit of this method is
that it does not require particularly elaborate experimental
arrangements. Indeed, in certain circumstances it is even
possible to increase the precision simply by taking powers
of the measured intensities. Since we explicitly account for
correlations between the data points [see Eqs. (20)–(22)], all
the measurements can be made simultaneously, thus reducing
considerably the measurement time required to obtain the
data. While we have framed the discussion in the context of
detector pixels on a CCD camera, the same methods apply
to any array of field detectors, including telescopes. By fully
determining the probability distribution function (PDF) for
measurements of intensity correlation functions, including
the covariance matrix of the correlated data, we are able to
determine the Fisher information for such experiments. This
allows us to calculate the maximum achievable precision via
the Cramér-Rao bound and also to saturate that bound by
performing a maximum likelihood estimation.

The techniques presented here can in principle be used
to estimate the source dimensions of any object that emits
incoherent light, including quantum emitters. In many cases
the Gaussian moment theorem does not apply and extra care
must be taken in the calculation of the correlation functions
G(n)(x1,s2, . . . ,sn). As long as the measured intensity is a
random variable then the PDF for the data can be considered
again as a multivariate normal when averaged over many
measurements. Also, the estimated parameters need not be
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Pixel separation has a large effect on the variance:



Remarks

• Higher-order correlations increase the imaging resolution, 
even for classical light. 

• However, higher orders become increasingly 
computationally intensive. 

• The ultimately achieved precision is quite sensitive to the 
type of imaging considered, and to correlations in the 
data (such as optical coherences). 

• What is the quantum Fisher information?



Quantum description of 
black body sources.

• Black body sources are described by the density matrix 

• The expectation values        are completely determined by 
the temperature of the source. 

• Our aim is to find the measurement that achieves the 
quantum Cramer-Rao bound for temperature 
measurements. 



The state observed in the far field 
depends on the detection volume.

• Suppose we observe the state    in the far field of the 
radiating object.



• We can divide this spectrum up into independent 
spectral modes of spectral width      . 

• The transverse coherence area of each spectral mode is 
proportional to      .   

• Below a certain frequency, every spectral mode has a 
coherence area larger than   .

The state observed in the far field 
depends on the detection volume.



• We define mode operators    ,      for each frequency 
mode.  

• Each mode is Gaussian so the state is completely 
characterised by the first and second moments,

The state observed in the far field 
depends on the detection volume.



Moments of the black body radiation field.

• For thermal modes the first moments are all 0: 

• Due to the independence of each spectral mode, the 
covariance matrix has the form 

• The average number of photons in the frequency mode 
centred on    depends on the fraction of that mode 
volume inside the state    .



Average photons per mode

• The average number of photons in spectral mode    is 
given by 

• If       is also unknown, we must attempt to estimate this 
simultaneously. 

• If we are uninterested in      , we must treat it as a 
nuisance parameter.



• the QFI for a Gaussian state is given by [1]

Gaussian quantum optimum estimators

[1] Y. Gao and H. Lee, The European Physical Journal D 68, 347  (2014) 

• The SLD for parameter     is given by



Quantum estimation for black bodies

• The SLD and QFI for single mode black bodies are 
therefore given by 

• The summation is due to the independence of modes.



Estimation from a single spectral mode

• For a single spectral mode, the QFI matrix for  
parameters                     is non-invertible

• We cannot distinguish between large cold objects and 
small hot objects



Multi-parameter estimation

• To estimate                     we must use at least two 
spectral modes. 

• The extension to multiple parameters generally increases 
the variance of a parameter estimation problem. 

• To make a fair comparison between the two strategies 
we must also assume that the single parameter problem 
utilises two spectral modes



Single parameter vs. multi-parameter

• We plot the single and multi-parameter variance of     for 
2, 3, 4, and 5 spectral modes. 

• The optimal measurement is still photon counting.
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808, 125 (2015). 



The temperature precision is a complicated 
function of the measured frequencies.
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• Two frequencies:

We must choose the frequency modes 
that optimise the precision.
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Increasing the measurement time 
increases the precision of our estimates.

• By increasing the observation time   , we observe more 
spectral modes in a given frequency interval.
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Remarks

• Thermometry involves nuisance parameters that need to 
be taken into account when calculating the QFI. 

• This requires measurements in multiple frequency modes. 

• There is a broad range of frequency modes that give near 
optimal precision. 

• Photon counting is optimal for thermometry, even in the 
presence of nuisance parameters.



Use multi-photon correlations to obtain 
increased sensing resolution.



A one-dimensional array of  
single photon sources.

• Consider a string of equidistant single photon sources. 

• The sources have an intrinsic Gaussian uncertainty in 
position:

ddx L1



We can calculate the quantum Fisher 
information for the lattice constant d.

• The QFI is given by  

• and the derivative of the state with respect to d is 



The QFI increases steadily with larger 
numbers of single photon sources N.
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The quantum Cramér-Rao bound.
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How can we turn this large QFI into a 
practical probe system?

• There is a lot of information about the lattice distance d in 
the state of N photons. 

• In the far field we have access to only a fraction of this 
information. 

• What is the QFI in the far field and what is the 
corresponding optimal measurement? 

• Stretch and skew generators?



Conclusions

• There is extra information in higher-order correlations, 
even in classical light. 

• To get this information, we must carefully model the 
nuisance parameters. 

• Adding single photon sources in an array gives a large 
increase in the QFI.  

• The question is how to get it out.


