Quantum imaging and metrology
with incoherent light
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What metrology improvements can we achieve
with incoherent light and photodetection?

-+ Quantum metrology is typically presented in terms of
highly coherent quantum states, such as NOON states.

+ Such states are susceptible to noise, and typically very
difficult to make.

-+ Can we get metrological (quantum) improvements with
incoherent light



Considerations for incoherent sources

- Thermal sources and single-photon sources.

+ Mode shapes and coherence properties become crucial.
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We present a few examples of
imaging and metrology with incoherent light:

8 Resolution beyond the Abbe limit
S from intensity correlations;

optical thermometry via intensity
measurements;

single-photon metrology probes.




Photon correlations in multiple detectors
iINncrease the resolution beyond Abbe limit.
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Oppel et al., Phys. Rev. Lett. 109, 233609 (2012).



The experimental setup:

N,

. Beam Expander |

Oppel et al., Phys. Rev. Lett. 109, 233609 (2012).



Photon correlations in multiple detectors
iINncrease the resolution beyond Abbe limit.
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The modulation scales
with N -1, where N IS
the number of detectors.
This allows us to
measure the distance d

W between the sources
e With Increased precision.
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Oppel et al., Phys. Rev. Lett. 109, 233609 (2012).



We can beat the Abbe limit using
higher-order photon correlations.

e (Classically, the resolution limit is given by
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e \With M the number of fringes, we can calculate the
resolution [imit as
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Oppel et al., Phys. Rev. Lett. 109, 233609 (2012).



The aperture is determined by
the position of the detectors.
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Can we use these higher order correlations for
iINncreased precision in imaging”



We image the size of a disk in the far field
using intensity correlation measurements.

Uniform circular source with radius a;
pseudo-thermal, monochromatic light with wave number k;

a distance d from the imaging plane.
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There are a number of methods for
combining data of multiple pixels.
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Pearce et al., Phys Rev A 92, 043831 (2015).



There are a number of methods for
combining data of multiple pixels.
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Image Data Processing

Calculate:
n-point correlations functions g for the disk;
covariance matrix Cov[g"(x),g"(x’)] from g";
Fisher information /,(a) from Cov[g"(x),g"(x)];

precision in the radius a from I»(a).



The n-point correlation functions
are easlly calculated.

The n-point correlation function of a disk emitting
pseudo-thermal (monochromatic) light is:

2
k|x|

)

g(n)(x) =(n-D'+(n-1)(n-1)!

The visibility is given by:

B gglgx_gigl)n - n- 1
g +gn  n+l
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We must calculate the covariance matrix
and the Fisher information

The covariance matrix between the n-point correlation
functions at different positions Is;

1
Cij _ ﬁ g[g(Zn)(xi,xj) . g(n)(xi )g("’)(xj)]

1
= N[g@”’(xi,x N —gM(x)g" ™ (x ).

This Is used to calculate the Fisher information:
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Resolution of the disk radius

0.40

0.30t

0.20t

0.10

100.8

100.0

99.6 |

99.2 ¢+

()

Distributed reference pixels

(c)

Fixed reference pixel

(b)
100.4 |

(d)

2 3 4
Correlation order

2 3 4 5
Correlation order

Pearce et al., Phys Rev A 92, 043831 (2015).
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Variance (Aa)? (um?

Distributed reference pixels give
petter results than fixed reference pixels.

Pixel separation has a large effect on the variance:
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Remarks

Higher-order correlations increase the imaging resolution,
even for classical light.

However, higher orders become increasingly
computationally intensive.

The ultimately achieved precision is quite sensitive to the
type of imaging considered, and to correlations in the
data (such as optical coherences).

What is the quantum Fisher information®?



Quantum description of
black body sources.

Black body sources are described by the density matrix

(0.0

P = ®k Pk Pk = Z

myk =0

(g )"*
(1 + (Aag)y)metl

|y Y |

-+ The expectation values {7y ) are completely determined by
the temperature of the source.

Our aim is to find the measurement that achieves the

guantum Cramer-Rao bound for temperature
measurements.



The state observed in the far field
depends on the detection volume.

* SuUppose we observe the state p in the far field of the
radiating object.



The state observed in the far field
depends on the detection volume.

- We can divide this spectrum up into independent
spectral modes of spectral width 1/7.

+ The transverse coherence area of each spectral mode is
proportional to Qv .

Below a certain frequency, every spectral mode has a
coherence area larger than A.



The state observed in the far field
depends on the detection volume.

- We define mode operators a;, dj for each frequency
mode.

Each mode is Gaussian so the state is completely
characterised by the first and second moments,
a=(a,d),...,4,,4,)"

H=<a) A=a—-pu

2ij = % [(didj> + (ajdi>]



Moments of the black body radiation field.

For thermal modes the first moments are all O:

u=0

Due to the independence of each spectral mode, the
covariance matrix has the form

B 0 () + %
== By ((fm +10

+ The average number of photons in the frequency mode
centred on v depends on the fraction of that mode

volume Inside the state p .



Average photons per mode

The average number of photons in spectral mode v is
given by

(1y) =

2Q¢ Av? 1 As
62

Qg = =2
N >R

If Qg IS also unknown, we must attempt to estimate this
simultaneously.

If we are uninterested in Qg, we must treat it as a
nuisance parameter.



Gaussian guantum optimum estimators

- the QFI for a Gaussian state is given by [1]

1o -1
To|, = 5Wep i P 0,5 + S0 L0 0
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-+ The SLD for parameter 6; is given by

1 — a K K — K
L; = Esmy,},aﬁaiz PAYA = Z7) + 5,01 A7

[1] Y. Gao and H. Lee, The European Physical Journal D 68, 347 (2014)




Quantum estimation for black bodies

- The SLD and QFI for single mode black bodies are
therefore given by

,Li _ i ((9i<nvl >)(<nvl> _ ﬁvl)

/=1 <nvl> + <nvl >2

2=z (n 3 Vol ) (Voln, )

[=1

»+ The summation is due to the independence of modes.



—stimation from a single spectral mode

For a single spectral mode, the QFI matrix for
parameters @ = (Qg, T)' is non-invertible

) _ 1 T
IQ = <nv>+<nv>2vﬂ<nv>(vﬂ<nv>)

-+ We cannot distinguish between large cold objects and
small hot objects




Multi-parameter estimation

To estimate 8 = (Qg, T)! we must use at least two

spectral modes.

The extension to multiple parameters

generally increases

the variance of a parameter estimation problem.

To make a fair comparison between t
we must also assume that the single
utilises two spectral modes
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Single parameter vs. multi-parameter
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We plot the single and multi-parameter variance of T for
2, 3, 4, and 5 spectral modes.
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The optimal measurement is still photon counting.



The temperature precision iIs a complicated
function of the measured frequencies.
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We must choose the frequency modes
that optimise the precision.
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Increasing the measurement time
iINncreases the precision of our estimates.

By increasing the olbservation time t, we observe more
spectral modes in a given frequency interval.
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Remarks

Thermometry involves nuisance parameters that need to
be taken into account when calculating the QFI.

This requires measurements in multiple frequency modes.

There Is a broad range of frequency modes that give near
optimal precision.

Photon counting is optimal for thermometry, even in the
oresence of nuisance parameters.




Use multi-photon correlations to obtain
iINncreased sensing resolution.

Multi-photon detection events

Precisely placed photon emitters

Object




A one-dimensional array of
single photon sources.

» Consider a string of equidistant single photon sources.

X d . |—1
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- The sources have an intrinsic Gaussian uncertainty in
position:
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We can calculate the guantum Fisher
iINformation for the lattice constant .

- The QFl is given by
2
To < 4{(¥/ () (@) - (@) ()}
+ and the derivative of the state with respect to d is

N

1 > 1 N .2
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The QFl increases steadily with larger
numbers of single photon sources N.
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The guantum Cramér-Rao bound.
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How can we turn this large QFl into a
practical probe system?

- There Is a lot of Information about the lattice distance d In
the state of N photons.

In the far field we have access to only a fraction of this
iInformation.

- What is the QFl in the far field and what is the
corresponding optimal measurement?

- Stretch and skew generators”?



Conclusions

- There Is extra information in higher-order correlations,
even in classical light.

- To get this information, we must carefully model the
nuisance parameters.

- Adding single photon sources in an array gives a large
increase in the QFI.

- The question is how to get it out.



