arXiv.org > quant-ph > arXiv:1602.05407

RANDOM SYMMETRIC STATES FOR
ROBUST QUANTUM METROLOGY

Antonio Acin

g Remik Augusiak

‘ C Fo Christian Gogolin
The Institute of Photonic Janek KOIOanSki

Sciences Maciek Lewenstein
Michal Oszmaniec

ICFO — The Institute of Photonic Sciences, Barcelona, Spain

“Recent Advances in Quantum Metrology”, University of Warsaw, March 2016



OUTLINE OF THE TALK

1. Connection between geometry of quantum states and their metrological properties
[Continuity of Quantum Fisher Information (QFI)]

i.  Natural link between the QFI and the Geometric Measure of Entanglement (E,).

ii. State (sequences) with vanishing entanglement properties with system size can yield precision

scaling arbitrary close to the Heisenberg Limit.
arxiv:1506.08837

2. Quantum metrology with random (typical) states
[iso-spectral quantum states sampled uniformly from the Haar measure on a unitary group]

i.  Random states of /V distinguishable particles (qudits) are useless for quantum metrology (despite
possessing on average high entanglement, £ = 1, and even allowing for LU optimisation).

ii. Random states of N symmetric particles (d-mode bosons) typically achieve the Heisenberg Limit.
* They are robust against mixing noise that (“non-exponentially”) increases with system size.

* They are robust against particle losses that (“sub-linearly”) increase with system size.

iii. Random states of NV pure symmetric particles (bosons) typically achieve the Heisenberg Limit
with measurement fixed to the (Mach-Zehnder) interferometric one with photon counting.

* They can be simulated efficiently with short random optical circuits generated from a set of
three types of beamsplitters and a single non-linear (Kerr-type) transformation.



QUANTUM METROLOGY PROTOCOL
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Unitary encoding of the parameter:

. . A 1
_ T . —ihy - N
ULP[Q] — U@QU@ with ULP = e h|| < =, e.g., for qubits h := 50>

[e.g. (squeezed) photons in Mach-Zehnder interferometry, (spin-squeezed) atoms in Ramsey spectroscopy]c

Ultimate bound on precision of estimation in the limit of sufficiently large statistics (v — ):

Quantum Cramer-Rao Bound Quantum Fisher Information (QFl) pN = Z/\i ;) (4]
1 2 i
VAQ(,E > — N1 ._ (Ar — Ar) 2 2 .
= N F =2 —_— H _ (n)
oo FalpV] alr] Ekl VY (el HlYnl® & Zlh

Local (frequentist) estimation with sufficiently large statistics (in contrast to the Bayesian one-shot approach).
Optimised over all measurements/inference strategies (for fixed measurement need to consider classical Fl).
Parameter-independence of QFI due to unitary encoding (not true for fixed measurement and classical Fl).

Fix encoding Hamiltonian and study properties of states, but in the Heisenberg picture analysis of Hamiltonians.
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ASYMPTOTIC ROLE OF ENTANGLEMENT IN QUANTUM METROLOGY |CFO
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Continuity of QFI on quantum states:

Fo[pV] — Folo™]| < €y/1- F(p¥.oM?N* | < € DylpV,o™) N2,

pN . oNEB(HON)

where F(p,0):=Try/+/opy/o is the Uhlmann fidelity and Dg (o, o \/2 1— o)) is the Bures distance.

Aside for specialists:

In general, we prove £=§& using purification-based definition of QFI:
[A. Fujiwara, PRA 63, 042304 (2001); B. M. Escher, R. L. de Matos Filho, and L. Davidovich, Nature Phys. 7, 406 (2011)]

If one of the states is pure we may tighten the bound to ¢{=6
via the convex-roof-based definition of QFI:

[G. Toth and D. Petz, PRA 87, 032324 (2013); S. Yu arXiv:1302.5311 (2013)]
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Continuity of QFI on quantum states:

v owapeny | 1Fale™] = Falo]] < eV1-F(pV, oV N2 | < € Dy(p™,0V) N2,

where F(p,0):=Try/v/o0+y/o is the Uhlmann fidelity and Dg(p, o \/2 1- o)) is the Bures distance.

Being close to metrologically useful states is good:

1
Fo[p"] ~ N? mmmp Folo™] 2 (1-¢Dp(p", o)) N? DB(PN,GN)<E = Fq[o"] ~ N?
N] ~ N2 [actually 7 > 1/2 is enough, see methods of

35
e.g., p~ —l[)GHZ and F>_— = FQ[U . ) .
I. Appelaniz et al (arxiv:1511.05203) developed for Dicke states]

36

Being too close to metrologically useless states is bad: (¢ > 1)

Ro[o™] ~ N b R[] < N+ € Dplp¥.0™) N b D(p¥,0¥) L s Fylp] S N2

.. but for (0 < e < 1) super-classical scaling despite approaching the useless states.
.. natural (geometrical) connection to Geometric Measure of Entanglement.



GEOMETRIC MEASURE OF ENTANGLEMENT, EG
The geometric measure of entanglement is defined as:

Eclp"] = I@fN ZPZEG

with the infimum taken over all ensembles such that p :Z pi| MY (N, where for any pure state ¢ :

1

EG[wN] - 1_I£J§“X| Sep‘w >’
Geometric interpretation: -

_";‘f NS L,

1

0< Eglp™]<1 Eclpil,] =0 Ec[i,) = 5

NOTE THE SCALE INDEPENDENCE, i.e., E; is independent of N for family of same type of states !!!



ARBITRARY CLOSE TO HL WITH VANISHING ENTANGLEMENT

Crucially, this allows us to bound the QFI of a state via its geometric measure of entanglement E:

FQ[p ]<maX{FQ Sep —I—f\/l— Sep)]\[?}

(CRN

F N <,/ E N N2

Thus, from the point of view of the asymptotic precision scaling:
1

1 Canb totically vanishi
— FA N o N2 — En [N > Can be asymptotically vanishing
Q[p ] G[p ] ~ Nz for any €>0 !!! (only lower bound)

A2

To attain “exact HL” E; must be asymptotically approaching a constant, but to attain a precision-scaling
“arbitrary close to HL” E; may be potentially taken to be arbitrary small for sufficiently large N.

On the other hand, the relative size of the Largest Entangled Block
(the ratio to the total number of particles):

ol = Rumn = o w| N=6 £-3 = R 2wz

[G. Toth, PRA 85, 022322 (2012); P. Hyllus et al, PRA 85, 022321 (2012)]

1 1
2 ~ 1—¢
N 2 vATS 2 — IZN — Rips 2 ~—
Folol)] < RuepN?|  mmmp N2 oA N
Can be asymptotically vanishing for any € > 0 !!! (only lower bound)

To attain “exact HL” R ; must be asymptotically approaching a constant, but to attain a precision-scaling
“arbitrarily close to HL” R, ; potentially may be taken to be arbitrary small for sufficiently large N.

arXiv.org > quant-ph > arXiv:1506.08837



STATE THAT DOES THE JOB

Generalised Werner-type state:
1 .
p =P [Yanz) (Yauz| @ |07 OY T + (1 —p)2—£ with 0 <p <1

[L. E. Buchholz, T. Moroder, and O. Glihne, arXiv:1412.7471]

Palofi] <5 Fumm|efi] < 5 Folpfy] = »l® = 2BRpsN®
~ 1 l ~ ]\]'1_?‘52 ‘ E ~ L R ~ L — F [d)N} ~ N2—81—282
p Ne ’ G Net y 1ULEB Ne2 Q 1]

Note that then in asymptotic N limit p — 0, so we deal with fully depolarised state !!!
Noise increases with N, but slowly enough !!!

e In order to attain “exactly the HL” (1/N?) as N— o, both the relative size

(Rigg) and the amount (E;) of entanglement cannot be vanishing
asymptotically with N.

* In order to attain “almost the HL” (1/NZ¢ for any ¢>0) as N— oo, both the

relative size (R, ;) and the amount (E;) of entanglement may be vanishing
asymptotically with N.
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QUANTUM METROLOGY WITH RANDOM STATES

OMNESS

You never saw it coming.




WHAT DO WE MEAN BY “RANDOM STATES” ?

Isospectral quantum states — density matrices with fixed spectrum:
{p1.p2.-- s} = p=)Y pilb)(s] = pu=UpU'
i
States generated by the unitary rotations:

U e SU(H)

chosen randomly according to
the uniform normalized (Haar) measure defined for the SU(H) group: ()

P




LIPSCHITZ CONTINUITY OF QFI

Lipschitz-continuous function: fluctuation O%U”Ctm” Lipschitz Constant
f:X—>R |f(X1) = f(Xo)] < L/
D(X1, X5) -

distance between elements

FQ(}AI): pN—>R ‘FQ[;ON] _FQ[JNH _ €N2
(for fixed H= Z h(” Dg (pN, O'N) -
: : o : Proof...?
Ok, ok.... but we need Lipschitz continuity on the unitary group SU(H):
Fq(f-:f,p) : U —R [Fq(Ur) — Fo(Us) < i
(remember U = UpUT) D(Ula UQ)

geodesic distance

QFI non-linear (SLD). Need diff-geometry...

GREAT..... BUT WHY ALL THIS LIPSCHITZ BUSINESS?
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CONCENTRATION OF MEASURE PHENOMENON

Functions on high-dimensional spaces typically attain values close to their averages.

% T

Applications of concentration of measure in quantum information:

* Foundations of statistical mechanics [Popescu et al 2005], [Goldstein et al 2005]
* Hasting’s disproof of additivity conjecture [Hastings 2009]
» Typical properties of entanglement for multiparticle system [Hayden et al 2005]

Andreas Winter: “One of these facts of life that you just need to accept...”



CONCENTRATION OF MEASURE PHENOMENON

Functions on high-dimensional spaces typically attain values close to their averages.

Concentration of measure on SU (H)

Let f: SU(H) — R be a function on SU (H) with the mean E,, f and
Lipschitz constant® L. Then, the following inequality holds

1w ({U € SUH)| 1f (U) —Epnf| > €}) < 2exp (——) |

where: j is the Haar measure on SU (H) and D = dimH.

“With respect to the geodesic distance




TYPICAL QFI FOR DISTINGUISHABLE PARTICLES

Allow for local unitary (LU) optimisation:

Y e Uy = exp (—iph)
SEEY U — O _\
| U} C,) Mx v => ¢u(x)
x”
LU-optimised QFI: Fé‘U [pN] = \/SSII?U Fq [VpNVT,H]

Result: Most random states are not useful for metrology

Fix a single-particle Hamiltonian h, local dimension d and a state px on Hy .
Let 5" (U) = F5" [Upn U], then

Pr (Fé‘U(U) ¢ © (N)) < exp (‘9 (ﬂ))

Ur~p(HN)




TYPICAL QFI FOR DISTINGUISHABLE PARTICLES

Sketch of the proof:
@ Lipschitz constant with LU-optimisation of F(SU [UpNUT} follows from
Lipschitz continuity of F;" [p"].

@ Average value of F(]jt [ _fp“Uw can be upper-bounded using results from
typicality of entanglement [Hayden et al. 2005]:

B, F5 |UpNUT| < 4n (1 + T) .
Animesh Datta talk — the role of two-body reduced density matrices...

@ Average value of Fi [UpNUT] (no optimization!) can be computed

explicitly and is of order N

Actually we obtain general formula for the average QFIl and any Hilbert (sub-)space:

E, Fo|UpU', H| := du Fo|UpUT H| = — - = I
D2 -1
SU(H) i,j: pi+p; #0
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TYPICAL QFI FOR SYMMETRIC STATES

Inspiration: Almost all pure symmetric (bosonic) qubit states [¢) € Sy
overcome SQL after LU optimization [Hyllus et al. 2010]

(talk of Augusto Smerzi focussing on the fact that, on the contrary, some are nevertheless not useful).

Result: Symmetric states typically attain the Heisenberg scaling

Fix a single-particle Hamiltonian A, local dimension d and a state py from the
symmetric subspace Sy with eigenvalues {p;},. Let

Fo(U) = Fo[U pN UT, H], then

UNE(%N)(FQ () < g (p", pmix)g o (N2)> < exp (— Di (p", pmix)g@ (Nd_l))

where Dg (pN, Pmix) is the Bures distance between pN and the maximally
mixed state pmix on SN.

NOISE ROBUSTNESS:

Super-classical scaling preserved as long as (noise restricted to symmetric subspace):

1 d—1
DB(pNapmix) Z W with a < T



ROBUSTNESS AGAINST LOSS OF FINITE NUMBER OF PARTICLES (IN CONTRAST TO GHZ STATES)

Pin Pe U, = exp (—iph)
O [7/]
¥ r,-*‘ O \ k
L (@) 1'
—— Uy — i O
Result: Typical robustness of QFI| under finite particle losses
Fix a single particle Hamiltonian h, local dimension d, and a state pN on Sy

with eigenvalues {p;};. Let Fq, (U) = Fq [tr (U p™ UT) , Hy_x], then

2 d—1
Pr Fo,(U) < |IpY = omixll5s © N7V < ex —1IpN = omix i © N
Unn(Sn) Q1 g mix || HS od =~ P [ mix ||HS p2d s

where ||p" — omix||us is the Hilbert-Schmidt distance between p” and the
maximally mixed state omix on Sn.

@ Main idea: use lower bound ||[p, H]||3;s < F' [p. H].
@ Setting k = N we obtain that typically F [p. H] > N*~ 9.



HEISENBERG SCALING WITH FIXED MEEASUREMENT SCHEME

@ System N bosons in two modes (a,b) and a standard interferometric

phase estimation scheme.
ol s (1
bl \ /_l : >W
1 |
b / \;’\E_r?

A Er-'l.l ‘I'\\'.'

corresponding to the unitary ending ¥ (p) = e "/=¥pe'’=¥ and
measurement in the Dicke basis

ﬂfﬂ — Dg s N = O NP ,_\T ,
corresponding to jy.

@ Ultimate precision of estimation of ¢ is quantified by the classical Fl

2

N tr l[D:{ iz}l—"(‘fﬂ)
Fa({pnip(0)}) = > ( tr(Dyn(e)) )

=0



HEISENBERG SCALING WITH FIXED MEEASUREMENT SCHEME

] . ( D""
NSNS

Typicality of HL in the simple interferometric setup

Let ¢'5 be a fixed pure state on Sy and pnhp(U’t/)NUT) be the probability of an

outcome n interferometric setup above for the phase value ¢ and the
interferometer state UynUT. Let Fu(U, ) = Fcl({pnw(U??[)NUT)}), then

P (Falp) <6 (N?)) < exp(—O(N)) .

Remark: |t is possible to prove a stronger statement:

Pr (3.ep.2n Fu(U.p) O (N¥)) < exp(—O(N))
U~p(SN)

THIS MEANS RANDOM STATES MAKE THE EXACT PHASE-VALUE PROBLEM IRRELEVANT!!!!
(Michal Jachura talk...)



SIMULATING RANDOM SYMMETRIC STATES

@ Can states mimicking the properties of Haar-random states on Sy be
generated efficiently?

@ Known result: [F. Brandao, A. Harrow and M. Horodecki 2012]
Sufficiently long random circuits formed from the set of gates universal in
‘H give approximate t-designs.

@ Our strategy: supplement gates universal for linear optics to get
universality on Sy for d = 2 modes.

Construction of the universal set of gates in Sy

@ Take single qubit gates generating SU (2) [Sarnak 1986]

oo L (1o2y 1 (1 =2
TUB\2 1) s\-2 1)
Voo L (14200

ST 00 1-2i)

and lift them to linear optics on Sy via V; = VOV,

@ Supplement this set of gates by cross-Kerr like transformation

Vi =exp(—iZnam).




SIMULATING RANDOM SYMMETRIC STATES

Quick (with circuit depth) saturability of the averaged QFI and classical QFI:

1x10%

5000

F
&
2000
F cl

1000

i 20 M A Wi "\g"
200 ﬂwiﬁw‘

10
‘J [F— red FQ b/ack]
100 0 50 100 150 7 200

0 20 | 40 60 30 100
K

(N = 100, number of independent realizations = 150)



SIMULATING RANDOM SYMMETRIC STATES

Attainable precision with generated random pure symmetric (bosonic) states:

0.01.

0.001

1 > 5 10 20 50 100 200
N

(for sufficient circuit depth and number of realizations, F—red, FQ — black)

@



CONCLUSIONS
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1.
2.
3.
4.
5.

Connection between geometry of quantum states and their metrological properties.
Continuity of Quantum Fisher Information (QFl) for unitary encoding.

Natural link (geometric) between the QFl and the Geometric Measure of Entanglement (£;).
Non-vanishing entanglement properties are necessary to attain the exact Heisenberg Limit.

States with asymptotically vanishing entanglement properties can yield precision scaling arbitrary
close to the Heisenberg Limit.
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Random states of IV distinguishable particles (qudits) are useless for qguantum metrology despite
possessing on average high entanglement, £, = 1, and even when allowing for LU optimisation.

Random states of N symmetric particles (d-mode bosons) typically achieve the Heisenberg Limit.
* They are robust against mixing noise that (“non-exponentially”) increases with system size.
* They are robust against particle losses that (“sub-linearly”) increase with system size.

Random states of IV pure symmetric particles (bosons) typically achieve the Heisenberg Limit with
measurement fixed to the (Mach-Zehnder) interferometric one with photon counting.

* They can be simulated efficiently with short random optical circuits generated from a set of
three types of beamsplitters and a single non-linear (Kerr-type) transformation.

THANK You ©



