RANDOM SYMMETRIC STATES FOR ROBUST QUANTUM METROLOGY

The Institute of Photonic Sciences

Antonio Acin Remik Augusiak Christian Gogolin Janek Kolodynski Maciek Lewenstein **Michal Oszmaniec**

ICFO – The Institute of Photonic Sciences, Barcelona, Spain

"Recent Advances in Quantum Metrology", University of Warsaw, March 2016

OUTLINE OF THE TALK

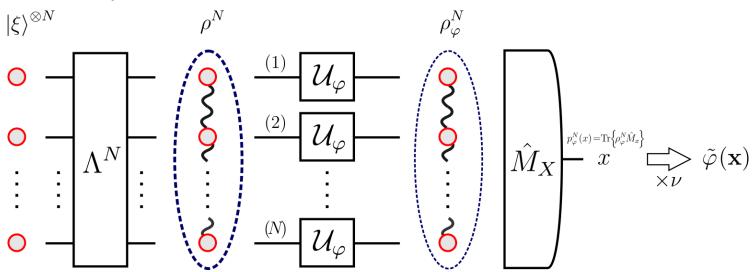
1. Connection between *geometry of quantum states* and their *metrological properties* [Continuity of Quantum Fisher Information (QFI)]

- i. Natural link between the **QFI** and the **Geometric Measure of Entanglement** ($E_{\rm G}$).
- ii. State (sequences) with *vanishing entanglement properties* with system size can yield precision scaling *arbitrary close to the Heisenberg Limit*.

arxiv:1506.08837

- 2. Quantum metrology with random (typical) states [iso-spectral quantum states sampled uniformly from the Haar measure on a unitary group]
 - i. Random states of N distinguishable particles (qudits) are useless for quantum metrology (despite possessing on average high entanglement, $E_{\rm G} \approx 1$, and even allowing for LU optimisation).
 - ii. Random states of *N* symmetric particles (*d*-mode bosons) typically achieve the Heisenberg Limit.
 - They are **robust against mixing noise** that ("non-exponentially") increases with system size.
 - They are **robust against particle losses** that ("sub-linearly") increase with system size.
 - iii. Random states of *N* <u>pure</u> symmetric particles (bosons) typically *achieve the Heisenberg Limit* with measurement fixed to the (*Mach-Zehnder*) interferometric one with photon counting.
 - They can be simulated efficiently with short random optical circuits generated from a set of three types of beamsplitters and a single non-linear (Kerr-type) transformation.

QUANTUM METROLOGY PROTOCOL



Unitary encoding of the parameter:

$$\mathcal{U}_{\varphi}[\varrho] = U_{\varphi} \varrho U_{\varphi}^{\dagger} \quad \text{with} \quad U_{\varphi} = \mathrm{e}^{-\mathrm{i}\hat{h}\varphi} \quad \left\|\hat{h}\right\| \leq \frac{1}{2}, \text{ e.g., for qubits } \hat{h} := \frac{1}{2}\hat{\sigma}_z$$

[e.g. (squeezed) photons in Mach-Zehnder interferometry, (spin-squeezed) atoms in Ramsey spectroscopy]c

Ultimate bound on precision of estimation in the limit of sufficiently large statistics $(v \rightarrow \infty)$:

$$\begin{array}{ll} \textbf{Quantum Cramer-Rao Bound} \\ \nu \ \Delta^2 \tilde{\varphi} & \geq \\ (\nu \rightarrow \infty) \end{array} \quad \begin{array}{l} \mathbf{Quantum Fisher Information (QFI)} \\ F_Q[\rho^N] & = \sum_{k,l} \frac{\lambda_i |\psi_i\rangle \langle\psi_i|}{\lambda_k + \lambda_l} |\langle\psi_k| \hat{H} |\psi_l\rangle|^2 \\ \hat{H} = \sum_{n=1}^N \hat{h}^{(n)} \end{array}$$

• Local (frequentist) estimation with sufficiently large statistics (in contrast to the Bayesian one-shot approach).

- Optimised over all measurements/inference strategies (for fixed measurement need to consider classical FI).
- Parameter-independence of QFI due to unitary encoding (not true for fixed measurement and classical FI).
- Fix encoding Hamiltonian and study properties of states, but in the Heisenberg picture analysis of Hamiltonians.

ASYMPTOTIC ROLE OF ENTANGLEMENT IN QUANTUM METROLOGY

Antonio Acin, Remigiusz Augusiak, Manabendra Nath Bera, Janek Kolodynski, Maciej Lewenstein, Alexander Streltsov

Continuity of QFI on quantum states:

$$\forall \\ \rho^{N}, \sigma^{N} \in \mathcal{B}(\mathcal{H}^{\otimes N}) : \quad \left| F_{\mathrm{Q}}[\rho^{N}] - F_{\mathrm{Q}}[\sigma^{N}] \right| \leq \xi \sqrt{1 - \mathcal{F}(\rho^{N}, \sigma^{N})^{2}} N^{2} \leq \xi \mathcal{D}_{\mathrm{B}}(\rho^{N}, \sigma^{N}) N^{2},$$

where $\mathcal{F}(\varrho, \sigma) := \operatorname{Tr}\sqrt{\sqrt{\sigma}\varrho\sqrt{\sigma}}$ is the Uhlmann fidelity and $\mathcal{D}_{\mathrm{B}}(\varrho, \sigma) := \sqrt{2(1 - \mathcal{F}(\varrho, \sigma))}$ is the Bures distance.

Aside for specialists:

In general, we prove $\xi = 8$ using *purification-based definition* of QFI: [A. Fujiwara, PRA 63, 042304 (2001); B. M. Escher, R. L. de Matos Filho, and L. Davidovich, Nature Phys. 7, 406 (2011)]

If one of the states is <u>pure</u> we may tighten the bound to $\xi=6$ via the **convex-roof-based definition** of QFI: [G. Toth and D. Petz, PRA 87, 032324 (2013); S. Yu arXiv:1302.5311 (2013)]

ASYMPTOTIC ROLE OF ENTANGLEMENT IN QUANTUM METROLOGY

Antonio Acin, Remigiusz Augusiak, Manabendra Nath Bera, Janek Kolodynski, Maciej Lewenstein, Alexander Streltsov

Continuity of QFI on quantum states:

$$\forall \\ \rho^{N}, \sigma^{N} \in \mathcal{B}(\mathcal{H}^{\otimes N}) : \left| F_{\mathrm{Q}}[\rho^{N}] - F_{\mathrm{Q}}[\sigma^{N}] \right| \leq \xi \sqrt{1 - \mathcal{F}(\rho^{N}, \sigma^{N})^{2}} N^{2} \leq \xi \mathcal{D}_{\mathrm{B}}(\rho^{N}, \sigma^{N}) N^{2},$$

where $\mathcal{F}(\varrho, \sigma) := \operatorname{Tr}\sqrt{\sqrt{\sigma}\varrho\sqrt{\sigma}}$ is the Uhlmann fidelity and $\mathcal{D}_{\mathrm{B}}(\varrho, \sigma) := \sqrt{2(1 - \mathcal{F}(\varrho, \sigma))}$ is the Bures distance.

Being **close** to metrologically **useful** states is **good**:

$$F_{\mathbf{Q}}[\rho^{N}] \sim N^{2} \implies F_{\mathbf{Q}}[\sigma^{N}] \gtrsim \left(1 - \xi \mathcal{D}_{\mathbf{B}}(\rho^{N}, \sigma^{N})\right) N^{2} \implies \mathcal{D}_{\mathbf{B}}(\rho^{N}, \sigma^{N}) < \frac{1}{\xi} \implies F_{\mathbf{Q}}[\sigma^{N}] \sim N^{2}$$

$$e g \quad \rho^{N} = \psi^{N}_{\mathbf{C}\mathbf{V}\mathbf{T}} \text{ and } \mathcal{F} > \frac{35}{2} \implies F_{\mathbf{Q}}[\sigma^{N}] \sim N^{2} \qquad \text{[actually } \mathcal{F} > 1/2 \text{ is enough, see methods of}$$

e.g., $\rho^N = \psi^N_{\text{GHZ}}$ and $\mathcal{F} > \frac{33}{36} \implies F_{\text{Q}}[\sigma^N] \sim N^2$ *I. Appelaniz et al* (arxiv:1511.05203) developed for Dicke states]

Being too close to metrologically *useless* states is **bad**: $(\varepsilon > 1)$

$$F_{\mathbf{Q}}[\sigma^{N}] \sim N \implies F_{\mathbf{Q}}[\rho^{N}] \leq N + \xi \,\mathcal{D}_{\mathbf{B}}(\rho^{N}, \sigma^{N}) \,N^{2} \implies \mathcal{D}_{\mathbf{B}}(\rho^{N}, \sigma^{N}) \sim \frac{1}{N^{\varepsilon}} \implies F_{\mathbf{Q}}[\rho^{N}] \lesssim N^{2-\varepsilon}$$

... but for $(0 < \varepsilon < 1)$ super-classical scaling despite approaching the useless states.

... natural (geometrical) connection to Geometric Measure of Entanglement.

Geometric measure of entanglement, $E_{ m G}$

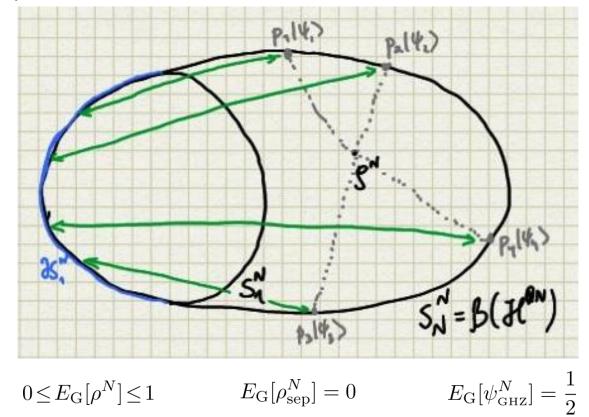
The geometric measure of entanglement is defined as:

$$E_{\mathcal{G}}[\rho^N] := \inf_{\{p_i, |\psi_i^N\rangle\}} \sum_i p_i E_{\mathcal{G}}[\psi_i^N]$$

with the infimum taken over all ensembles such that $\rho^N = \sum_i p_i |\psi_i^N\rangle \langle \psi_i^N|$, where for any pure state ψ^N :

$$E_{\rm G}[\psi^N] := 1 - \max_{\phi_{\rm sep}^N} \left| \langle \phi_{\rm sep}^N | \psi^N \rangle \right|^2.$$

Geometric interpretation:



NOTE THE SCALE INDEPENDENCE, i.e., E_G is independent of N for family of same type of states !!!

ARBITRARY CLOSE TO HL WITH VANISHING ENTANGLEMENT

Crucially, this allows us to bound the QFI of a state via its geometric measure of entanglement $E_{\rm G}$:

$$F_{\mathbf{Q}}[\rho^{N}] \leq \max_{\psi_{\mathrm{sep}}^{N}} \left\{ F_{\mathbf{Q}}[\psi_{\mathrm{sep}}^{N}] + \xi \sqrt{1 - \mathcal{F}(\rho^{N}, \psi_{\mathrm{sep}}^{N})} N^{2} \right\}$$

$$F_{\mathbf{Q}}[\rho^{N}] \leq N + \xi \sqrt{E_{\mathbf{G}}[\rho^{N}]} N^{2}$$

$$F_{\mathbf{Q}}[\rho^{N}] \leq N + \xi \sqrt{E_{\mathbf{G}}[\rho^{N}]} N^{2}$$

Thus, from the point of view of the asymptotic precision scaling:

$$\nu \Delta^2 \tilde{\varphi} \gtrsim \frac{1}{N^{2-\varepsilon}} \implies F_{\mathbf{Q}}[\rho^N] \sim N^{2-\varepsilon} \implies E_{\mathbf{G}}[\rho^N] \gtrsim \frac{1}{N^{2\varepsilon}}$$

<u>Can</u> be asymptotically vanishing for any ε>0 !!! (only lower bound)

To attain "exact HL" $E_{\rm G}$ must be asymptotically approaching a constant, but to attain a precision-scaling "arbitrary close to HL" $E_{\rm G}$ may be potentially taken to be arbitrary small for sufficiently large N.

On the other hand, the **relative size** of the **Largest Entangled Block**

(the ratio to the total number of particles):

 $F_{\rm Q}\left[\rho_{(l)}^N\right] \leq R_{\rm LEB} N^2$

$$\rho_{(l)}^N \iff R_{\text{LEB}} = \frac{l}{N}$$

[G. Toth, PRA 85, 022322 (2012); P. Hyllus et al, PRA 85, 022321 (2012)]

<u>Can</u> be asymptotically vanishing for any $\varepsilon > 0$!!! (only lower bound)

To attain "exact HL" R_{LEB} must be asymptotically approaching a constant, but to attain a precision-scaling "arbitrarily close to HL" R_{LEB} potentially may be taken to be arbitrary small for sufficiently large N.

arXiv.org > quant-ph > arXiv:1506.08837

STATE THAT DOES THE JOB

Generalised Werner-type state:

$$\rho_{[l]}^{N} = p \left| \psi_{\text{GHZ}}^{l} \right\rangle \left\langle \psi_{\text{GHZ}}^{l} \right| \otimes \left| 0^{N-l} \right\rangle \left\langle 0^{N-l} \right| + (1-p) \frac{\mathbf{1}_{N}}{2^{N}} \quad \text{with} \quad 0 \le p \le 1$$

[L. E. Buchholz, T. Moroder, and O. Gühne, arXiv:1412.7471]

 $E_{\rm G}\left[\rho_{[l]}^{N}\right] \leq \frac{p}{2}, \quad R_{\rm LEB}\left[\rho_{[l]}^{N}\right] \leq \frac{l}{N} \qquad F_{\rm Q}\left[\rho_{[l]}^{N}\right] \underset{N \to \infty}{\approx} p \, l^{2} = 2E_{\rm G}R_{\rm LEB}^{2}N^{2}$ $p \sim \frac{1}{N^{\varepsilon_{1}}}, \, l \sim N^{1-\varepsilon_{2}} \implies E_{\rm G} \sim \frac{1}{N^{\varepsilon_{1}}}, R_{\rm LEB} \sim \frac{1}{N^{\varepsilon_{2}}} \implies F_{\rm Q}\left[\psi_{[l]}^{N}\right] \sim N^{2-\varepsilon_{1}-2\varepsilon_{2}}$

Note that then in asymptotic N limit $p \rightarrow 0$, so we deal with **fully depolarised state** !!! Noise increases with N, but slowly enough !!!

- In order to attain "exactly the HL" ($1/N^2$) as $N \rightarrow \infty$, both the **relative size** (R_{LEB}) and the **amount** (E_G) of entanglement <u>cannot</u> be vanishing asymptotically with N.
- In order to attain "almost the HL" $(1/N^{2-\varepsilon} \text{ for any } \varepsilon > 0)$ as $N \to \infty$, both the **relative size** (R_{LEB}) and the **amount** (E_G) of entanglement <u>may</u> be vanishing asymptotically with N.

QUANTUM METROLOGY WITH RANDOM STATES

WHAT DO WE MEAN BY "RANDOM STATES"?

Isospectral quantum states – density matrices with **fixed spectrum**:

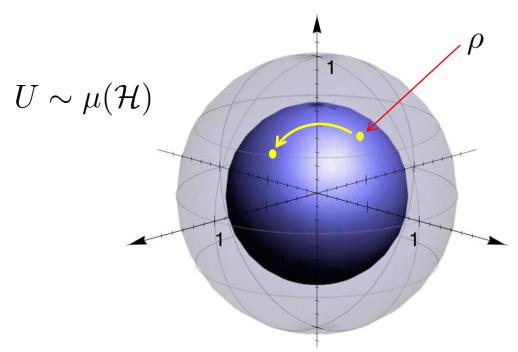
 $\{p_1, p_2, \dots, p_d\} \implies \rho = \sum_i p_i |\psi_i\rangle \langle \psi_i| \implies \rho_U = U\rho U^{\dagger}$

States generated by the **unitary rotations**:

 $U \in \mathrm{SU}(\mathcal{H})$

chosen randomly according to

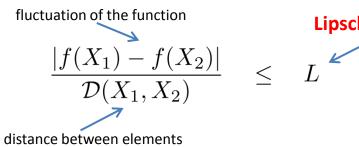
the uniform normalized (Haar) measure defined for the ${
m SU}({\cal H})$ group: $\mu({\cal H})$



LIPSCHITZ CONTINUITY OF QFI

Lipschitz-continuous function:

$$f:X\to \mathbb{R}$$



Lipschitz Constant

We have thus just proved Lipschitz continuity of QFI on states !!!!:

$$F_{Q}(\hat{H}): \rho^{N} \to \mathbb{R}$$
(for fixed $\hat{H} = \sum_{n} \hat{h}^{(n)}$)
$$\frac{\left|F_{Q}[\rho^{N}] - F_{Q}[\sigma^{N}]\right|}{\mathcal{D}_{B}(\rho^{N}, \sigma^{N})} \leq \xi N^{2}$$
(proof 2)

Ok, ok.... but we need Lipschitz continuity on the unitary group $SU(\mathcal{H})$:

 $F_{\mathbf{Q}}(\hat{H}, \rho) : U \to \mathbb{R}$ (remember $\rho_U = U\rho U^{\dagger}$)

$$\frac{|F_{\mathbf{Q}}(U_1) - F_{\mathbf{Q}}(U_2)|}{\mathcal{D}(U_1, U_2)} \leq \tilde{L}$$

geodesic distance

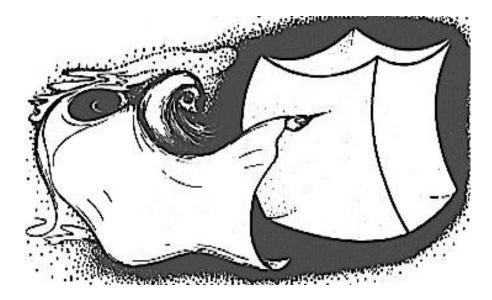
QFI non-linear (SLD). Need diff-geometry...

GREAT..... BUT WHY ALL THIS LIPSCHITZ BUSINESS?

arXiv.org > quant-ph > arXiv:1602.05407

CONCENTRATION OF MEASURE PHENOMENON

Functions on high-dimensional spaces typically attain values close to their averages.



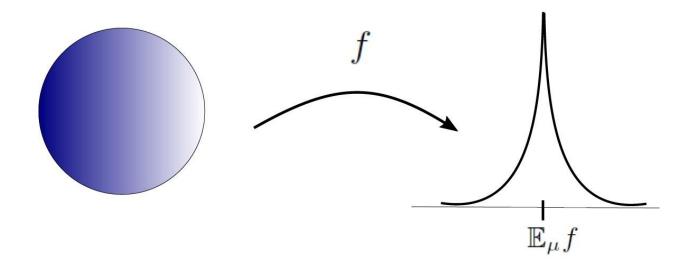
Applications of concentration of measure in quantum information:

- Foundations of statistical mechanics [Popescu et al 2005], [Goldstein et al 2005]
- Hasting's disproof of additivity conjecture [Hastings 2009]
- Typical properties of entanglement for multiparticle system [Hayden et al 2005]

Andreas Winter: "One of these facts of life that you just need to accept..."

CONCENTRATION OF MEASURE PHENOMENON

Functions on high-dimensional spaces typically attain values close to their averages.



Concentration of measure on $SU(\mathcal{H})$

Let $f : \mathrm{SU}(\mathcal{H}) \to \mathbb{R}$ be a function on $\mathrm{SU}(\mathcal{H})$ with the mean $\mathbb{E}_{\mu} f$ and Lipschitz constant^a L. Then, the following inequality holds

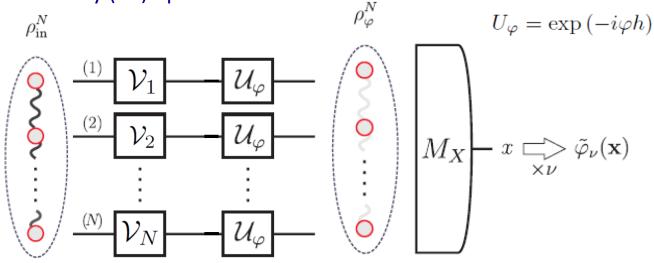
$$\mu\left(\left\{U \in \mathrm{SU}\left(\mathcal{H}\right) \mid |f\left(U\right) - \mathbb{E}_{\mu}f| \ge \epsilon\right\}\right) \le 2\exp\left(-\frac{D\epsilon^2}{4L^2}\right) ,$$

where: μ is the Haar measure on SU (\mathcal{H}) and $D = \dim \mathcal{H}$.

^aWith respect to the geodesic distance

TYPICAL QFI FOR DISTINGUISHABLE PARTICLES

Allow for local unitary (LU) optimisation:



LU-optimised QFI:

$$F_{\mathbf{Q}}^{\mathrm{LU}}[\rho^{N}] = \sup_{V \in \mathrm{LU}} F_{\mathbf{Q}}\left[V\rho^{N}V^{\dagger}, H\right]$$

Result: Most random states are not useful for metrology

Fix a single-particle Hamiltonian h, local dimension d and a state ρ_N on \mathcal{H}_N . Let $F_{\mathbf{Q}}^{\mathbf{LU}}(U) = F_{\mathbf{Q}}^{\mathbf{LU}}\left[U\rho_N U^{\dagger}\right]$, then

$$\Pr_{U \sim \mu(\mathcal{H}_N)} \left(F_{\mathbf{Q}}^{\mathrm{LU}}(U) \notin \Theta(N) \right) \le \exp\left(-\Theta\left(\frac{d^N}{N^2}\right) \right)$$

TYPICAL QFI FOR DISTINGUISHABLE PARTICLES

Sketch of the proof:

- Lipschitz constant with LU-optimisation of $F_{\rm Q}^{\rm LU}[U\rho^N U^{\dagger}]$ follows from Lipschitz continuity of $F_{\rm Q}^{\rm LU}[\rho^N]$.
- Average value of $F_{\rm Q}^{\rm LU}[U\rho^N U^{\dagger}]$ can be upper-bounded using results from typicality of entanglement [Hayden et al. 2005]:

$$\mathbb{E}_{\mu} F_{\mathbf{Q}}^{\mathrm{LU}} \left[U \rho^{N} U^{\dagger} \right] \leq 4N \left(1 + \frac{(N-1)}{\sqrt{d^{N}}} \right)$$

Animesh Datta talk — the role of two-body reduced density matrices...

• Average value of $F_Q[U\rho^N U^{\dagger}]$ (no optimization!) can be **computed** explicitly and is of order N.

Actually we obtain general formula for the average QFI and any Hilbert (sub-)space:

$$\mathbb{E}_{\mu} F_{\mathrm{Q}} \Big[U\rho U^{\dagger}, \hat{H} \Big] := \int_{\mathrm{SU}(\mathcal{H})} \mathrm{d}\mu F_{\mathrm{Q}} \Big[U\rho U^{\dagger}, \hat{H} \Big] = \frac{2 \cdot \mathrm{tr} \left(\hat{H}^2 \right)}{D^2 - 1} \sum_{i,j: p_i + p_j \neq 0} \frac{(p_i - p_j)^2}{p_i + p_j}$$

TYPICAL QFI FOR SYMMETRIC STATES

Inspiration: Almost all pure symmetric (*bosonic*) qubit states $|\psi\rangle \in S_N$ overcome SQL after LU optimization [Hyllus et al. 2010]

(talk of Augusto Smerzi focussing on the fact that, on the contrary, some are nevertheless not useful).

Result: Symmetric states typically attain the Heisenberg scaling

Fix a single-particle Hamiltonian h, local dimension d and a state ρ_N from the symmetric subspace S_N with eigenvalues $\{p_j\}_j$. Let $F_Q(U) = F_Q[U \rho^N U^{\dagger}, H]$, then

$$\Pr_{U \sim \mu(\mathcal{S}_N)} \left(F_{\mathbf{Q}}\left(U\right) \le \mathcal{D}_{\mathbf{B}}\left(\rho^N, \rho_{\min}\right)^2 \Theta\left(N^2\right) \right) \le \exp\left(-\mathcal{D}_{\mathbf{B}}\left(\rho^N, \rho_{\min}\right)^3 \Theta\left(N^{d-1}\right)\right)$$

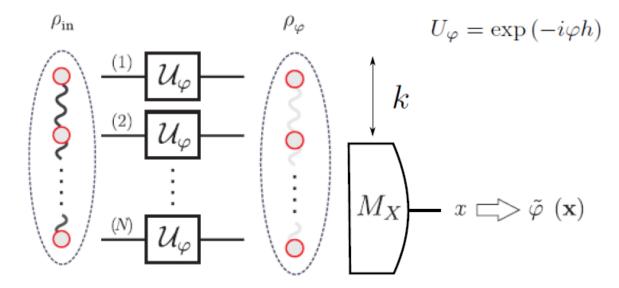
where $\mathcal{D}_{B}(\rho^{N}, \rho_{mix})$ is the Bures distance between ρ^{N} and the maximally mixed state ρ_{mix} on \mathcal{S}_{N} .

NOISE ROBUSTNESS:

Super-classical scaling preserved as long as (noise restricted to symmetric subspace):

$$\mathcal{D}_{\mathrm{B}}(\rho^{N}, \rho_{\mathrm{mix}}) \gtrsim \frac{1}{N^{\alpha}} \text{ with } \alpha < \frac{d-1}{3}$$

ROBUSTNESS AGAINST LOSS OF FINITE NUMBER OF PARTICLES (IN CONTRAST TO GHZ STATES)



Result: Typical robustness of QFI under finite particle losses

Fix a single particle Hamiltonian h, local dimension d, and a state ρ^N on S_N with eigenvalues $\{p_j\}_j$. Let $F_{Q_k}(U) = F_Q \left[\operatorname{tr}_k \left(U \rho^N U^{\dagger} \right), H_{N-k} \right]$, then

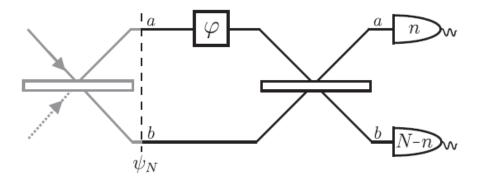
$$\Pr_{U \sim \mu(\mathcal{S}_N)} \left(F_{\mathbf{Q}_k}(U) < \|\boldsymbol{\rho}^N - \sigma_{\min}\|_{\mathrm{HS}}^2 \Theta\left(\frac{N^2}{k^d}\right) \right) \leq \exp\left(-\|\boldsymbol{\rho}^N - \sigma_{\min}\|_{\mathrm{HS}}^4 \Theta\left(\frac{N^{d-1}}{k^{2d}}\right)\right) \ ,$$

where $\|\rho^N - \sigma_{\min}\|_{HS}$ is the Hilbert-Schmidt distance between ρ^N and the maximally mixed state σ_{\min} on S_N .

- Main idea: use lower bound $\|[\rho, H]\|_{HS}^2 \leq F[\rho, H]$.
- Setting $k = N^{\alpha}$ we obtain that typically $F[\rho, H] \ge N^{2-d\alpha}$.

HEISENBERG SCALING WITH FIXED MEASUREMENT SCHEME

 System N bosons in two modes (a,b) and a standard interferometric phase estimation scheme.



corresponding to the unitary ending $\psi(\varphi) = e^{-i\hat{J}_z\varphi}\rho e^{i\hat{J}_z\varphi}$ and measurement in the Dicke basis

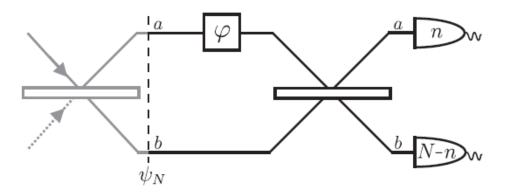
$$M_n = D_n^y , \ n = 0, \dots, N ,$$

corresponding to \hat{J}_y .

• Ultimate precision of estimation of φ is quantified by the classical FI

$$F_{\rm cl}(\left\{p_{n|\varphi}(\psi)\right\}) = \sum_{n=0}^{N} \frac{\operatorname{tr}\left(\mathrm{i}\left[D_{n}^{y}, \hat{J}_{z}\right]\psi(\varphi)\right)^{2}}{\operatorname{tr}\left(D_{n}^{y}\psi(\varphi)\right)}$$

HEISENBERG SCALING WITH FIXED MEASUREMENT SCHEME



Typicality of HL in the simple interferometric setup

Let ψ_N be a fixed pure state on S_N and $p_{n|\varphi}(U\psi_N U^{\dagger})$ be the probability of an outcome n interferometric setup above for the phase value φ and the interferometer state $U\psi_N U^{\dagger}$. Let $F_{cl}(U, \varphi) = F_{cl}(\{p_{n|\varphi}(U\psi_N U^{\dagger})\})$, then

$$\Pr_{U \sim \mu(\mathcal{S}_N)} \left(F_{\rm cl}(U,\varphi) \le \Theta\left(N^2\right) \right) \le \exp\left(-\Theta(N)\right) \;.$$

Remark: It is possible to prove a stronger statement:

$$\Pr_{U \sim \mu(\mathcal{S}_N)} \left(\exists_{\varphi \in [0, 2\pi]} F_{\mathrm{cl}}(U, \varphi) \leq \Theta\left(N^2\right) \right) \leq \exp\left(-\Theta(N)\right) \;.$$

This Means Random states make the exact phase-value problem Irrelevant!!!! (Michal Jachura talk...)

SIMULATING RANDOM SYMMETRIC STATES

- Can states mimicking the properties of Haar-random states on S_N be generated efficiently?
- Known result: [F. Brandao, A. Harrow and M. Horodecki 2012] Sufficiently long random circuits formed from the set of gates universal in *H* give approximate *t*-designs.
- Our strategy: supplement gates universal for linear optics to get universality on S_N for d = 2 modes.

Construction of the universal set of gates in S_N :

• Take single qubit gates generating SU(2) [Sarnak 1986]

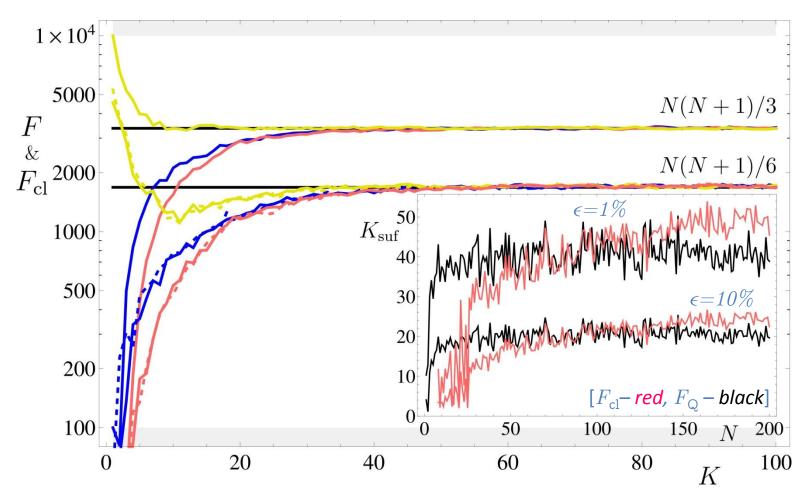
$$V_{1} = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & 2i \\ 2i & 1 \end{pmatrix}, V_{2} = \frac{1}{\sqrt{5}} \begin{pmatrix} 1 & -2 \\ -2 & 1 \end{pmatrix}$$
$$V_{3} = \frac{1}{\sqrt{5}} \begin{pmatrix} 1+2i & 0 \\ 0 & 1-2i \end{pmatrix},$$

and lift them to linear optics on S_N via $\hat{V}_i = V_i^{\otimes N}$.

• Supplement this set of gates by cross-Kerr like transformation $\hat{V}_{\mathsf{K}} = \exp\left(-i\frac{\pi}{3}\hat{n}_{a}\hat{n}_{b}\right)$.

SIMULATING RANDOM SYMMETRIC STATES

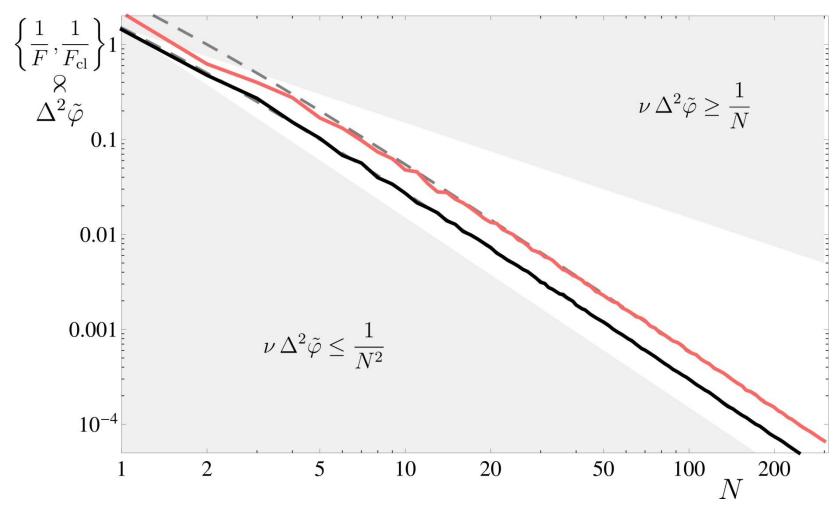
Quick (with circuit depth) saturability of the averaged QFI and classical QFI:



(N = 100, number of independent realizations = 150)

SIMULATING RANDOM SYMMETRIC STATES

Attainable precision with generated random pure symmetric (bosonic) states:



(for sufficient circuit depth and number of realizations, F_{cl} -*red*, F_{Q} -*black*)

CONCLUSIONS

arXiv.org > quant-ph > arXiv:1506.08837

- 1. Connection between **geometry of quantum states** and their **metrological properties**.
- 2. Continuity of Quantum Fisher Information (QFI) for unitary encoding.
- 3. Natural link (geometric) between the QFI and the Geometric Measure of Entanglement ($E_{\rm G}$).
- 4. Non-vanishing entanglement properties are necessary to attain the exact Heisenberg Limit.
- 5. States with asymptotically vanishing entanglement properties can yield precision scaling arbitrary close to the Heisenberg Limit.

arXiv.org > quant-ph > arXiv:1602.05407

- 1. Random states of *N* distinguishable particles (*qudits*) are useless for quantum metrology despite possessing on average high entanglement, $E_{\rm G} \approx 1$, and even when allowing for LU optimisation.
- 2. Random states of *N* symmetric particles (*d*-mode bosons) typically achieve the Heisenberg Limit.
 - They are **robust against mixing** noise that ("non-exponentially") increases with system size.
 - They are **robust against particle losses** that ("sub-linearly") increase with system size.
- 3. Random states of N <u>pure</u> symmetric particles (bosons) typically achieve the Heisenberg Limit with measurement fixed to the (Mach-Zehnder) interferometric one with photon counting.
 - They can be simulated efficiently with short random optical circuits generated from a set of three types of beamsplitters and a single non-linear (Kerr-type) transformation.

ΤΗΑΝΚ ΥΟυ 🙂