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@ Motivation: Improving Stability in (Ion) Clocks
® On the Importance of Non-Quantum Limits

® Clock Controller Design
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Stability Matters
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Multi-Ion Clocks are Coming

Protocols

PRL 116, 013002 (2016)
We have read-out protocols for
chains of group-13 ions with
sub-linear overhead

But will they be entangled?

Appl. Phys. B 114, 231 (2014)
We have low-micromotion traps
suitable for 10~!9 spectroscopy of
ion ensembles
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We Need Credible Performance Promises

Eentanglement in a serious frequency standard will be hard work.
Will it bring greater benefits than other kinds of hard work?
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Pragmatically Fundamentally
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specific, implementable schemes achievable performance

(so we know what to try) (so we know when to quit)
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® On the Importance of Non-Quantum Limits
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The Standard Argument

Phase estimation with N unentangled atoms has a minimum
resolution

1
A =—
(Ad)sqL ~

due to the independent quantum projection noise (QPN) of each
atom. For a single measurement of duration T, the resulting

frequency resolution is
1

T TVN

Phase estimation with N entangled atoms can reach a resolution

Aw

1

(A(P)Heisenberg = N;

so should allow an N-fold reduction in averaging times!
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Are We Really QPN-Limited?
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IDL, Monika H. Schleier-Smith, Vladan Vuleti¢, PRL 104, 250801 (2010)
see also Hosten et al., Nature 529, 505 (2016)
Treutlein & co., yesterday’s talk.
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Are We Really QPN-Limited?

Phase Variance / QPN

Probe Time / ps

IDL, Monika H. Schleier-Smith, Vladan Vuleti¢, PRL 104, 250801 (2010)
see also Hosten et al., Nature 529, 505 (2016)
Treutlein & co., yesterday’s talk.
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Aside: LO Noise Hurts in Two Ways

Dead Time Probe Time

Dick Effect Probe Time/Resolution

* Unobserved frequency * Probe response function
fluctuations during dead must be informative at all
time cannot be corrected plausible LO frequencies

* Limits mostly lattice clocks * Limits mostly ion clocks

* Fixed by continuous or * Notfixed by simultaneous

simultaneous interrogation interrogation
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There Is No Quantum Limit to Frequency Resolution

Toy model: one atom, perfect Ramsey
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The frequency resolution limit must come from another timescale,
which must be understood if we're going to optimize.

The extra timescale generically comes from non-Markovian,
correlated noise.
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The Importance of the Prior

Toy model: Gaussian prior LO frequency uncertainty
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Excitation Probability

The Importance of the Prior
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The Importance of the Prior

Excitation Probability
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Fisher information and linearization describe suboptimally short
probe times. Need a global figure of merit, e.g. posterior variance.
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Whence the Prior?

Noise
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Optimal probe protocol depends on prior, which depends on
controller performance, which depends on probe protocol, ...

Fortunately, LO noise dominates, so iterative optimization
converges quickly.
[1] General, sadly impractical solution: Mullan and Knill, Phys. Rev. A 90, 042310 (2014)
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® Clock Controller Design
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The Controller’s Job

LO (Laser) Output
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Given a history ..., y4, y3, y2, 1 of estimates of the LO frequency, make
a prediction hy of the next estimate yj.

We restrict ourselves to controllers that make frequency corrections.
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General Linear Controllers

General linear controllers (GLC) make predictions of the form
ho =) wiyk Y we=1.
k k

For instance, the standard integrating controller is
[e.]

ho=h+gn—h) =Y gl-gFy
k=1
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How Should We Choose the Weights?

The mean-squared error of the prediction
ho =) wiyk
k
is
((ho~ fo)*) = w'Cuw,
using the covariance matrix

Cik=<{(yo—yj)(yo—yi))-

The MSE is minimized when

Cw=|) AERDY wi=1
k

18/22



Computing the Weights from Available Information

From spectrum:
Cjr= 4foo S(f) sincz(nfT) sin(jrfT)sin(kr fT)cos((j—k)nfT)df
0

From phenomenological model:

2 1 1 - 2 157 130 - 2 52 52
12 1 - 157 313 243 - 52 5 1172
_2 a2 N )
C=02p (|1 1 2 +0: tor | 130 243 374 +o? (D52 1z 8 —

From clock data:
Cik={o—yj)yo—yi))
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The Impact of Controller Performance

10 ions, 0.6 s Ramsey, 20 ms dead time
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The Impact of Controller Performance

Allan Deviation o(7) / Hz

10 ions, 0.8 s Ramsey, 20 ms dead time

Integrator
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The Impact of Controller Performance
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Summary and Open Questions

I've argued that:
* Multi-ion clocks are coming and their stability matters.

* Clock measurement protocols should optimize for gain of
frequency information, not phase resolution. This optimization
depends on the prior knowledge of LO frequency available
before the measurement.

* The servo controller maintains this prior knowledge, and is
worth optimizing.

I wonder:

* Does the frequency error distribution acquire heavy tails?

Should we optimize for kurtosis as well as variance?

* Can non-linear control algorithms better prevent fringe hops,
especially when facing non-Gaussian priors?
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