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Parallel strategies
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[ Tonnerre de Brest!. ..

Sequential str.

. but takes more time!

Sequential can simulate any parallel



Parallel strategies

Ancillas are useless!!tS LgfE?

QC

Sequential str.
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Sequential and entangled-parallel are equivalent in the
noiseless case...

What happens in the noisy case?

The unentangled strategy performs
WORSE!!!

Then you should use entanglement to achieve hlgher
sensitivity in the presence of noise! &

very surprising!




simple example: erasure noise.

simple to see: noise and unitary commute!

0) + 1)

v >

0N+ )N

- (d)

_________________________

e "y

(a) Optimal sequential strategy, which is equivalent to a (b) sequential
strategy where a (larger) erasure happens at the end, which is equivalent
to a specific (c) parallel-entangled strategy where the erasure is only on
the first probe, which is equivalent to a (d) parallel-entangled strategy in
the presence of erasure on all probes. This last is weaker than the
optimal parallel-entangled strategy, since the input state is not optimized



General hierarchy of metrology strategies

(1) (ii)
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General hierarchy of metrology strategies

(1) (11)
@—Atp—-'-”--—f\w—D Ag
: N/n N
@‘Aw_ ..... _A‘F’_D =y .
(iii) (iv)
oM A@f PM M Uil Unf~
V= AVAS Il
(i) = (ii) = (iii) = (iv) decoherence free,
(i) < (ii) = (iii) = (iv) dephasing, erasure,
(i) < (ii) < (iii) s (iv) amplitude-damping,
?
(i) < (ii) < (iii) — (iv) general conjecture.
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Fisher info for

these strategies:
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these strategies:
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Fisher info for

these strategies:
FO = maxF{[AG(p)]®"/"}.

F) = "ﬂﬂ:[ﬂgﬁ (o)

F) = maxF[ASY @ 19¥(p,)),
M

JF":“"J = Imnax F+[Uﬁﬂ¢rﬂlj‘l¢{fjﬂ}]‘

A Ui }

Flil) o peliii)  pelii) < pliv)

Other relations?
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It's difficult to calculate Fl:

Quse upper bounds: max(, ()] < 4minl 3 SK{K.

k

K} = (0K} 0p)

W (G
) i bl
using the parallel structure of the Kraus maps, we can prove:

frlii/ii) < 4n;_LnN|1rx|| + N(N - 1)||8I%

F™) < 4minN | + N(N = DIIAICNell + A1+ 1)
Ls

a= Zkﬁ;’fﬁ'f and f} = Zkﬁfﬁf

(i) and (iii) have the same bound: are they equivalent?

NOIl = amplitude damping: (i) < (i)

(ii/iif) and (iv) have different bound: are they inequivalent?
NOIl — » (maybe they're equivalent! CONJECTURE!
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What about the sequential strategy (i)?

I've already shown that it's strictly worse than (ii) for erasure,
that's also true for dephasing
(but it's not true for amplitude damping!)

i 7

Do we know that (i) is always worse or
equal than (ii)?




(1) (11)

@..Aw__..ﬁ.._j\(p_D A
OIb D\ E
What about the sequential strategy (i)?

I've already shown that it's strictly worse than (ii) for erasure,
that's also true for dephasing
(but it's not true for amplitude damping!)

Do we know that (i) is always worse or
equal than (ii)?

NO!!! (conjecture)



Open question!

IS entanglement at the
measurement stage useful!??

(it's useless in the noiseless case!)

21~

[recent work by Kavan Modi?]

=
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What I'm going to talk about

We always say that entangled states are more
correlated... WHAT DOES IT MEAN exactly?




What I'm going to talk about

We always say that entangled states are more
correlated... WHAT DOES IT MEAN exactly?

- they have more correlations
* among complementary +
observables than separable ones




Usual approaches to study
entanglement

*Non locality

.LOCC (?1?!)

» Bell inequality violations
 Enhanced precision in measurements

e efc.



Here: we use correlations
among two (or more)
COMPLEMENTARY
PROPERTIES

different way to think about
entanglement, as
correlations among
complementary properties




Remember: Complementary properties.




Remember: Complementary properties.

Two observables: the knowledge of
one gives no knowledge of the other

4 N

y (alc)| = —
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simplest example:

00) +11)
V2

Maximally entangled state: perfect

correlation BOTH on 0/1 and on +/-

(100)(00] + [11)(11[)/2 =
() + =) (=) /2 @ (1) (+] + [=){=])/2

separable state: perfect correlation for 0/1,
no correlation for +/-




Simple experiment

* On system 1 measure either Aor C

lllllllllll
llllllllll

----------------------

! AC:\ TN SRt e, T AN e

| C(.:_/ source

A S B‘;SSib'e meas. possible-l:n-e-a-s-/; ""
system 1 system 2
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How to measure correlation?

\\

« Mutual information

Isp = H(A)+ H(B)— H(A,B)

e

e Pearson correlation coefficient

_ {(AB)—{(A)(B CA = 1=
CAB — < > < >< > ‘perflz‘ct correlation

OA OB or anticorrelation




Use these to measure correlations
among

2 complementary properties
A ® B <complemto> O ® D

of 2 systems
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---------
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source
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possible meas.”

system 2

_______

possible meas.

Sl system 1
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Some results...




Start with mutual informatiog

Lip=H(A) + H(B) - H(A,B)¥

possible meas. possible meas.”

system 1 | system 2
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 The system state is maximally
entangled iff perfect correlation
9 on both A-B and C-D .

(for some observ ABCD)
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The system state is entangled if correlations on
both A-B and C-D are large enough

r Iap+ 1op > 10gd :)1
P19 ent

Can the bound be made tlght/

‘the separable state
3(100)€00] + [11){11])

saturates it: /ap + Icp = logd

P




IS the converse true?




IS the converse true?

- NOU




The systen state is entangled if correlations on
both A-B and C-D are large enough

IS the converse true?

NO!!
1) = €]00) + /1 — e2[11)

IS entangled but has negligible

LEE, mutual info for € — 0

d

" % <
ﬂ_,,‘f@@



Another measure of
correlation...
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Pearson correlation coefficient
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perfect correlation
OA9RB or anticorrelation

Cap =
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Pearson correlation coefficient

@B)—(A)(B) [Casl=1=
0 A

perfect correlation

Cin =
_ or anticorrelation

it can be complex for qguantum expectation values

.. but its modulus is still < ‘1‘ :
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Pearson correlation coefﬁcient

Cin = (AB)—(A Capl=1=
AB — o perfect correlation
L M or anticorrelation

it can be complex for qguantum expectation values

not a problem for us: A and
B commute, so it's REAL <

ARB=AR14+1Q® B

e




Total correlation: again use
the sum
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True also using Pearson! (for linear
observables: Pearson measures only linear correl)
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True also using Pearson! (for linear
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Conjecture: |C4p| + |Cop| > 1 = state is ent.

Again, the inequality is tight:
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Again, the inequality is tight:
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Conjecture: |C4p| + |Cop| > 1 = state is ent.

Again, the inequality is tight:

separable state ‘()())(()()‘ ‘11)(11‘

|CAB| + |COD| — k,

(perfect correl on on;/bass "“‘., X8

no correl on the complem)
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\
NO!!

all correlations




Is the Pearson correlation- o finear

correlations

weaker than the mutual infg
NO!
) = €|00) + /1 — €2|11)

Has negligible mutual info for ¢ — 0
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Is the Pearson correlation- o finear

correlations

weaker than the mutual mf@
NO!
) = €]00) + /1 — e2|11)

Has negligible mutual info for ¢ — O
but Pearson correlation

always >1!

all correlations




~ Simple criterion for entanglemenf
detection!!

Just measure two complementary
properties. Are the correlations greater
than perfect correlation on one?

(3 The state ga___2ul
Is entangled! %, e

A 4

Simple to measure and simple to optimize.

Unfortunately: not very effective in
finding entanglement in random states



What did | say?!?

- Entanglement as correlation amonig
complementary observables

 Mutual info
 Pearson correlation

« Some theorems and some conjectures



Take home message

The most correlated states are entangled
but ent states™are not the most correlated
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