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Weak measurements

Pre-selected state:

Post-selected state:

In the weak interaction

regime approximation:

and  h  
canonically
conjugated
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Interpretation of weak values:

• conditioned average in the limit of 0 disturbance [Dressel et al., PRL 104 (2010)]

• arising from disturbance related to the von Neumann coupling

[Dressel and Jordan, PRA 85 (2012)]

• Expectation values as averages of weak values [Aharonov and Botero, PRA 72 (2005)]

• POVMs can be realized as a sequence of weak values [Oreshkov and Brun, PRL 95 (2005)]

Some interesting properties:

is a complex number

is unbounded!

Weak measurements
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 Foundations of Quantum Mechanics: 
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Possible applications

 Metrology: 

 Amplification of measurement of coupling strength:

• Light beam displacement [Kwiat et al.]

• Angular deflection [Dixon et al.]

• …

 Advantages: 

• Amplification of signal without amplifying unrelated noise [Boyd et al.]

• Only a fraction of beam post-selected, the rest still available

 Foundations of Quantum Mechanics: 

 Better understanding of quantum measurement, with the possibility to measure 

incompatible observables at once [Mitchinson et al.]

 Tests of quantum contextuality [Pusey]

 Hints on Quantum Mechanics interpretations [TSVF, Aharonov et al., …]
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Wave function 

collapse

Non-commuting 

observables can’t be 

simultaneously 

measured!

Single projective measurement:

Joint/sequential projective measurements:

Standard "sharp" measurement:
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Joint and sequential weak measurements

Weak values «challenge one of the canonical dicta of QM: that non commuting

observables cannot be simultaneously measured»

«the fact that one hardly disturbs the systems in making WM means that one can in

principle measure different variables in succession» [Mitchison, Jozsa and Popescu, PRA 76

(2007)]

RAQM 2016, March 2–4, Warsaw, Poland



Joint and sequential weak measurements

Weak values «challenge one of the canonical dicta of QM: that non commuting

observables cannot be simultaneously measured»

«the fact that one hardly disturbs the systems in making WM means that one can in

principle measure different variables in succession» [Mitchison, Jozsa and Popescu, PRA 76

(2007)]

Joint weak measurement

Resch et al., PRL 92, 130402 (2004)

RAQM 2016, March 2–4, Warsaw, Poland



Joint and sequential weak measurements

Weak values «challenge one of the canonical dicta of QM: that non commuting

observables cannot be simultaneously measured»

«the fact that one hardly disturbs the systems in making WM means that one can in

principle measure different variables in succession» [Mitchison, Jozsa and Popescu, PRA 76

(2007)]

Joint weak measurement

Resch et al., PRL 92, 130402 (2004)

Sequential weak measurement

Mitchinson et al., PRA 76, 062105 (2007)
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Weak measurement implementation

Birefringent

crystal Polarizer
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Weak measurement implementation

We measure the position observable ,  

canonically coniugated to the pointer observable

Birefringent

crystal Polarizer
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Sequential weak measurement

Linearly polarized pre- and post-

selection states
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SPAD array output VS. theoretical prediction
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Typical single data acquisition obtained

with our 32x32 SPAD camera (after noise

subtraction)

Corresponding predicted probability

distribution calculated according to

the theory
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Results summary

Measured weak values (data points) compared with the theoretical predictions

arXiv:1508.03220
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WMs and quantum contextuality

Non-Contextual Hidden Variable Theory: ontological model of an operational theory

where, if two experimental procedures are operationally equivalent, then they have

equivalent representations in such model [Spekkens, PRA 71 (2005)].
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WMs and quantum contextuality

Non-Contextual Hidden Variable Theory: ontological model of an operational theory

where, if two experimental procedures are operationally equivalent, then they have

equivalent representations in such model [Spekkens, PRA 71 (2005)].

The measurement outcome depends only on the Hermitian operator associated with

the measurement, not on the ones measured simultaneously with it: each observable

has a predetermined value (given by some HVs), independent of the context.
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Yes! Pusey, PRL 113 (2014)
Can WMs be 

sign of quantum 

contextuality?
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WM and quantum contextuality
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No non-contextual model satisfying outcome determinism for sharp measurements
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Condition 4: non-contextual bound violation

    units 
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Fidelity between 𝑄(𝑥) and 𝑄 𝑒 (𝑥) always above 99% (sampling on >230 points)
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WM and contextuality: final check

No non-contextual model allowed: weak measurements proved quantum contextuality
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