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■ Tsang, Wiseman, and Caves, “Fundamental Quantum
Limit to Waveform Estimation,” PRL 106, 090401
(2011).

◆ Bayesian QCRB for stochastic process (infinite num-
ber of parameters), non-commuting Heisenberg-
picture generators, sequential/continuous measure-
ments

■ Tsang and Nair, ‘Fundamental quantum limits to wave-
form detection,” PRA 86, 042115 (2012).

◆ Helstrom bounds on waveform detection/false-alarm
errors

■ Tsang, “Quantum metrology with open dynamical sys-
tems,” NJP 15, 073005 (2013).

■ Iwasawa et al., “Quantum-limited mirror-motion estima-
tion,” PRL 111, 163602 (2013).

■ Berry et al., “The Quantum Bell-Ziv-Zakai Bounds and
Heisenberg Limits for Waveform Estimation,” PRX 5,
031018 (2015).

■ Ng et al., “Spectrum analysis with quantum dynamical
systems,” preprint available upon request.

■ More on https://sites.google.com/site/mankeitsang/

https://sites.google.com/site/mankeitsang/


Executive Summary
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Imaging of One Point Source
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Point-Spread Function of Hubble Space Telescope
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Inferring Position of One Point Source
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■ Given N detected photons on camera, mean-
square error of estimating X1:

∆X2
1 =

σ2

N
, σ ∼ λ

sinφ
. (1)

■ Assume classical source (e.g., thermal source,
laser source).

■ Derive from signal-to-noise ratio, classi-
cal/quantum Cramér-Rao bounds, etc.

■ Helstrom



Superresolution Microscopy
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■ PALM, STED, STORM, etc.: Make fluorescent
particles radiate in isolation. Estimate their po-
sitions accurately by locating the centroids.

■ https://www.youtube.com/watch?v=2R2ll9SRCeo

(25:45)
■ require special fluorescent particles

(blinking/bleaching/stimulated-emission-
depleted, doesn’t work for stars), slow

■ e.g., Betzig, Optics Letters 20, 237 (1995).
■ For a review, see Moerner, PNAS 104, 12596

(2007).

https://www.youtube.com/watch?v=2R2ll9SRCeo


Two Point Sources
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(a)

(b)

■ Rayleigh’s criterion (1879): requires θ2 &
σ (heuristic)



Centroid and Separation Estimation
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■ Bettens et al., Ultramicroscopy 77, 37 (1999);
Ram, Ward, Ober, PNAS 103, 4457 (2006)

■ Assume incoherent sources, Poissonian statis-
tics for CCD

■ classical Cramér-Rao bound for centroid:

∆θ21 ∼ σ2

N
. (2)

■ CRB for separation estimation: two regimes

◆ θ2 ≫ σ:

∆θ22 ≈ 4σ2

N
, (3)

◆ θ2 ≪ σ:

∆θ22 → 4σ2

N
×∞ (4)

Bound blows up when the two spots overlap
significantly.

◆ Curse of Rayleigh’s criterion
◆ Localization microscopy: must avoid over-

lapping spots.

(a)

(b)



Fisher Information and Cramér-Rao Bound
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■ Cramér-Rao bounds:

∆θ21 ≥ 1

J (direct)
11

∆θ22 ≥ 1

J (direct)
22

(5)

J (direct) is Fisher information for CCD (direct imaging via spatially resolved photon counting).
■ Assume Gaussian PSF, similar behavior for other PSF
■ Rayleigh’s curse: ∆θ2 blows up when Rayleigh’s criterion is violated.

θ2/σ
0 2 4 6 8 10

F
is
h
er

in
fo
rm

at
io
n
/
(N

/
4σ

2
)

0

0.5

1

1.5

2

2.5

3

3.5

4
Classical Fisher information

J
(direct)
11

J
(direct)
22

θ2/σ
0 0.2 0.4 0.6 0.8 1

M
ea
n
-s
q
u
ar
e
er
ro
r
/
(4
σ
2
/N

)

0

20

40

60

80

100
Cramér-Rao bound on separation error

Direct imaging (1/J
(direct)
22 )



Quantum Cramér-Rao Bounds
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■ CCD is just one measurement method. Quantum mechanics allows infinite possibilities.
■ Helstrom: For any measurement (POVM) of an optical state ρ⊗M (M here is number of copies,

not magnification)

Σ ≥ J−1 ≥ K−1, (6)

Kµν =M Re (trLµLνρ) , (7)

∂ρ

∂θµ
=

1

2
(Lµρ+ ρLµ) . (8)

■ Coherent sources: Tsang, Optica 2, 646 (2015).
■ Mixed states:

ρ =
∑

n

Dn |en〉 〈en| , (9)

Lµ = 2
∑

n,m;Dn+Dm 6=0

〈en| ∂ρ
∂θµ

|em〉
Dn +Dm

|en〉 〈em| . (10)

■ Helstrom didn’t study this particular two-source quantum parameter estimation problem.



Quantum Optics for Thermal Sources
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■ Mandel and Wolf, Optical Coherence and Quantum Optics; Goodman, Statistical Optics
■ Consider a thermal source, e.g., stars, fluorescent particles.
■ Coherence time ∼ 10 fs. Within each coher-

ence time interval, average photon number ǫ≪ 1 at optical frequencies (visible, UV, X-ray, etc.).

■ Quantum state at image plane:

ρ = (1− ǫ) |vac〉 〈vac|+ ǫ

2
(|ψ1〉 〈ψ1|+ |ψ2〉 〈ψ2|) +O(ǫ2) 〈ψ1|ψ2〉 6= 0, (11)

|ψ1〉 =
∫ ∞

−∞

dxψ(x−X1) |x〉 , |ψ2〉 =
∫ ∞

−∞

dxψ(x−X2) |x〉 , |x〉 = a†(x) |vac〉 . (12)

■ derive from zero-mean Gaussian P function
■ Multiphoton coincidence: rare, little information as ǫ≪ 1 (homeopathy)
■ Similar model for stellar interferometry in Gottesman, Jennewein, Croke, PRL 109, 070503

(2012); Tsang, PRL 107, 270402 (2011).



Classical and Quantum Cramér-Rao Bounds
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■ For any ψ(x) with constant phase,

∆θ22 ≥ 1

K22
=

1

N∆k2
. (13)

(For Gaussian ψ, σ = 1/(2∆k))
■ Ranjith Nair (unpublished): K22 for arbitrary ǫ gives the same result to the first order of ǫ
■ Hayashi ed., Asymptotic Theory of Quantum Statistical Inference; Fujiwara JPA 39, 12489

(2006): there exists a POVM such that ∆θ2µ → 1/Kµµ, M → ∞.



Hermite-Gaussian basis
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■ project the photon in Hermite-Gaussian basis:

E1(q) = |φq〉 〈φq | , (14)

|φq〉 =
∫ ∞

−∞

dxφq(x) |x〉 , (15)

φq(x) =

(

1

2πσ2

)1/4

Hq

(

x√
2σ

)

exp

(

− x2

4σ2

)

. (16)

■ Assume PSF ψ(x) is Gaussian (common).

|〈φq|ψ1〉|2 = |〈φq|ψ2〉|2 =

∣

∣

∣

∣

∫ ∞

−∞

dxφ∗q(x)ψ

(

x± θ2

2

)
∣

∣

∣

∣

2

= exp(−Q)
Qq

q!
, Q ≡ θ22

16σ2
. (17)

1

J (HG)
22

=
1

K22
=

4σ2

N
. (18)

■ Maximum-likelihood estimator can asymptotically saturate the classical bound.



Spatial-Mode Demultiplexing (SPADE)
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Binary SPADE
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Numerical Performance of Maximum-Likelihood Estimators
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■ L = number of detected photons
■ biased (in a good way), < 2×CRB.



Extensions
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■ Tsang, Nair, and Lu “Quantum theory of superresolution for two incoherent optical point
sources,” arXiv:1511.00552 (submitted, stuck with a referee).

■ Tsang, Nair, and Lu, “Semiclassical Theory of Superresolution for Two Incoherent Optical Point
Sources,” arXiv:1602.04655 (submitted to QCMC 2016): semiclassical Poisson model gives the
same results, also works for lasers.

■ Nair and Tsang, “Interferometric superlocalization for two incoherent optical point sources,”
Opt. Express 24, 3684 (2016).

◆ Super-Localization by Image-inVERsion interferom-
etry (SLIVER)

◆ 2D imaging, semiclassical theory, arbitrary ǫ.
◆ covered by Laser Focus World, Feb 2016.

Estimator

Image

Inversion

■ Ang, Nair, Tsang (submitted to CLEO/QELS 2016)

◆ QCRB for 2D and ǫ≪ 1
◆ 2D generalizations of SPADE and SLIVER

■ Nair, Lu, and Tsang (under preparation)

◆ 1D and arbitrary ǫ
◆ Fidelity for hypothesis testing (one source vs two sources), extending Helstrom
◆ QCRB (validates our ǫ≪ 1 approximation)



Quantum Metrology with Classical Sources
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■ Thermal/fluorescent/laser sources, linear optics, photon counting
■ Compare with other QIP applications:

◆ QKD (Bennett et al.)
◆ Nonclassical-state metrology (Yuen, Caves)
◆ Shor’s algorithm
◆ Quantum simulations (Feynman, Lloyd)
◆ Boson sampling (Aaronson)

■ More robust against loss
■ Rayleigh’s criterion is a huge deal for microscopy (physics, chemistry, biology, engineering),

telescopy (astronomy), radar/lidar (military), etc.
■ Current microscopy limited by photon shot noise in EMCCD (see, e.g., Pawley ed., Handbook of

Biological Confocal Microscopy).
■ Ground telescopes/stellar interferometers limited by atmospheric turbulence, space telescopes

are diffraction/shot-noise-limited.
■ Linear optics/photon-counting technology is mature

Although any given scheme can be explained by a semiclassical model, quantum metrology
remains a powerful tool for exploring the ultimate performance with any measurement.



Quantum Metrology Kills Rayleigh’s Criterion
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■ Rayleigh’s criterion is irrelevant to quantum bound.
■ SPADE/SLIVER can achieve quantum bound via linear optics

and photon counting.

◆ Tsang, Nair, and Lu “Quantum theory of super-
resolution for two incoherent optical point sources,”
arXiv:1511.00552.

◆ Nair and Tsang, “Interferometric superlocalization for two
incoherent optical point sources,” Opt. Express 24, 3684
(2016).

◆ Tsang, Nair, and Lu, “Semiclassical Theory of Super-
resolution for Two Incoherent Optical Point Sources,”
arXiv:1602.04655.

■ FAQ: https://sites.google.com/site/mankeitsang/

news/rayleigh/faq

■ email: mankei@nus.edu.sg
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ǫ ≪ 1 Approximation
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■ Chap. 9, Goodman, Statistical Optics:

“If the count degeneracy parameter is much less than 1, it is highly probable that there will be either zero or

one counts in each separate coherence interval of the incident classical wave. In such a case the classical

intensity fluctuations have a negligible ”bunching” effect on the photo-events, for (with high probability) the

light is simply too weak to generate multiple events in a single coherence cell.

■ Zmuidzinas (https://pma.caltech.edu/content/jonas-zmuidzinas), JOSA A 20, 218 (2003):

“It is well established that the photon counts registered by the detectors in an optical instrument follow

statistically independent Poisson distributions, so that the fluctuations of the counts in different detectors are

uncorrelated. To be more precise, this situation holds for the case of thermal emission (from the source, the

atmosphere, the telescope, etc.) in which the mean photon occupation numbers of the modes incident on the

detectors are low, n ≪ 1. In the high occupancy limit, n ≫ 1, photon bunching becomes important in that it

changes the counting statistics and can introduce correlations among the detectors. We will discuss only the

first case, n ≪ 1, which applies to most astronomical observations at optical and infrared wavelengths.”

■ Hanbury Brown-Twiss (post-selects on two-photon coincidence): poor SNR, obsolete for
decades in astronomy.

■ See also Labeyrie et al., An Introduction to Optical Stellar Interferometry, etc.
■ Fluorescent particles: Pawley ed., Handbook of Biological Confocal Microscopy, Ram, Ober,

Ward (2006), etc., may have antibunching, but Poisson model is fine because of ǫ ≪ 1.



Unknown Centroid and Misalignment
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Overhead to locate centroid:

ξ =
|θ1 − θ̌1|

σ
∼ 1√

N1
≪ 1 (19)
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