Investigating the spatial distribution of entanglement and its role in quantum metrology

Sabine Wölk, Sanah Altenburg , Otfried Gühne

Theoretical Quantum Optics Universität Siegen

2nd March 2016

Quantum systems are growing

New J. Phys. 14, 123034 (2014)

Blueprint of a microwave ion trap quantum computer

arXiv:1508.00420

\implies Spatial distribution of fields/ entanglement matters

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Example

Detecting long range entanglement

Quantum metrology with different entanglement configurations

Conclusion

Sinusoidal observable

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Observable

$$ec{J} = \sum_j \sin\left(2\pi rac{ extbf{x}_j}{\lambda}
ight)ec{\sigma}_j$$

Position dependent rotation of spin

Spatial distribution matters

イロト 不得 トイヨト イヨト

э.

S.Wölk and O.Gühne, arXiv: 1507.07226

Detecting long range entanglement

Find the mimimum of

$$\left(riangle ec J
ight)^2 = \left(riangle J_X
ight)^2 + \left(riangle J_Y
ight)^2 + \left(riangle J_Z
ight)^2$$

for given entanglement distribution

- Minimum is achieved by pure states
- The variance splits into

$$\left(\bigtriangleup \vec{J} \right)^2 = \sum_{\{j,k\}} \left(\bigtriangleup \vec{J} \right)^2_{j,k}$$

with $\{j, k\}$ denoting pairs of entangled states

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Optimization

・ロト・日本・日本・日本・日本・日本

Results

・ロト・(四ト・(川下・(日下))

Quantum metrology

How to increase N?

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Quantum Fisher information

strength of driving field

Quantum Fisher Information

state	d =const.	$d = \ell/N$
$ \Psi^{-} angle$, w = 2	$4(t/T)^2 N^2$	$4(t/T)^2$
$ \Psi^{-} angle$, $w=N$	$(t/T)^2 N^4$	$(t/T)^2 N^2$
$\otimes 0 angle, w=1$	$4(t/T)^2 N^4$	$4(t/T)^2 N^2$

Classical Fisher Information

• Observable:
$$\left(\bigtriangleup \vec{J} \right)^2 (d/\lambda)$$

• Starting point:
$$\frac{\ell}{\lambda} = \frac{3}{4}$$

Conclusion

(ロ) (同) (三) (三) (三) (○) (○)

Summary:

- The spatial distribution of entanglement matters!
- It can be characterized with the help of global observables, e.g. sinusoidal observables.
- It influences the precision achievable for measuring spatial dependent fields.

S.Wölk and O.Gühne, arXiv: 1507.07226

Outlook:

- How to characterize the width of entanglement for multipartite entanglement?
- What is the best state to distinguish different spatial variances of the field?