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Quantum systems are growing

Cloud of cold atoms
measurement pulse, the atoms and light interact via an
effective Hamiltonian (see the Supplemental Material [35])

τĤeff ¼ G1ŜzF̂z; ð2Þ

where G1 is a coupling constant describing the vector light
shift and τ is the pulse duration [36,37]. Equation (2)
describes a QND measurement of F̂z, i.e., a measurement
with no backaction on F̂z. We detect the output

ŜðoutÞy ¼ ŜðinÞy þG1Ŝ
ðinÞ
x F̂ðinÞ

z ; ð3Þ

which leads to measurement-induced conditional spin
squeezing of the F̂z component by a factor 1=ð1þ ζÞ,
where ζ ¼ 2

3
G2

1NLNA is the signal-to-noise ratio (SNR) of
the measurement [38].
To measure and squeeze the remaining spin components,

we follow a stroboscopic probing strategy described in
Refs. [39,40]. We apply a magnetic field along the [111]
direction so that the collective atomic spin rotates F̂z →
F̂x → F̂y during one Larmor precession cycle. We then
time our probe pulses to probe the atoms at TL=3 intervals,
allowing us to measure all three components of the
collective spin in one Larmor period. Note that the probe
duration τ ≪ TL, so that we can neglect the rotation of the
atomic spin during a probe pulse.
This measurement procedure respects the exchange

symmetry of the input TSS and generates correlations
among pairs of atoms independent of the distance between
them, leading to large-scale entanglement of the atomic
spins. The resulting state has ð1 − ξ2ÞNA spins entangled in
a MSS and ξ2NA spin excitations (spinons).
Our experimental apparatus, illustrated in Fig. 1(a), is

described in detail in Ref. [41]. In each cycle of the
experiment, we trap up to 1.5 × 106 87Rb atoms in a
weakly focused single beam optical dipole trap. The atoms
are laser cooled to a temperature of 20 μK and optically
pumped into the f ¼ 1 hyperfine ground state. A shot-

noise-limited balanced polarimeter detects ŜðoutÞy while a

reference detector before the atoms measures ŜðinÞx . The trap
geometry produces a large atom-light interaction for light
pulses propagating along the axis of the trap, quantified by
the effective optical depth d0 ¼ ðσ0=AÞNA, where σ0 ¼
λ2=π and A ¼ 2.7 × 10−9 m is the effective atom-light
interaction area [41], giving d0 ¼ 69.5 with NA ¼ 1.5 ×
106 atoms. We measure an atom-light coupling constant
G1 ¼ 9.0� 0.1 × 10−8 rad per spin (see the Supplemental
Material [35]). The measured sensitivity of the Faraday
rotation probing is ΔFz ¼ 515 spins [12], allowing
projection-noise-limited probing of an input TSS with
NA > 1.75 × 105 atoms.
The measurement sequence is illustrated in Figs. 1(b)

and 1(c). For each measurement, the atoms are initially
prepared in a TSS via repeated optical pumping of the

atoms between f ¼ 1 and f ¼ 2, as described in Ref. [12].
We then probe the atomic spins using a train of τ ¼ 1 μs
long pulses of linearly polarized light, detuned by 700MHz
to red of the f ¼ 1 → f0 ¼ 0 transition of the D2 line.
Each pulse contains on average NL ¼ 2.8 × 108 photons.
To access also F̂x and F̂y, we apply a magnetic field with
a magnitude B ¼ 16.9� 0.1 mG along the direction [111].
The atomic spins precess around this applied field with
a Larmor period of TL ¼ 85 μs ≫ τ, and we probe the
atoms at TL=3 ¼ 28.3 μs intervals for two Larmor periods,
allowing us to analyze the statistics of repeated QND
measurements of the collective spin.
After the QND probing, the number of atoms NA is

quantified via dispersive atom number measurement
(DANM) [12,13] by applying a bias field Bz ¼ 100 mG,
optically pumping the atoms into jf ¼ 1; mf ¼ 1i with
circularly polarized light propagating along the trap axis
resonant with the f ¼ 1 → f0 ¼ 1 transition, and then
probing with the Faraday rotation probe.
The sequence of state preparation, stroboscopic probing,

and DANM is repeated 12 times per trap loading cycle. In
each sequence, ∼15% of the atoms are lost, mainly during
the state preparation, so that different values of NA are
sampled during each loading cycle. At the end of each
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FIG. 1 (color online). (a) Experimental geometry. Near-
resonant probe pulses pass through a cold cloud of 87Rb atoms
and experience a Faraday rotation by an angle proportional to the
on-axis collective spin F̂z. The pulses are initially polarized with
a maximal Stokes operator Ŝx recorded on a reference detector
(PD3). Rotation toward Ŝy is detected by a balanced polarimeter
consisting of a wave plate (WP), polarizing beam splitter (PBS),
and photodiodes (PD1;2). (b) Pulse sequence: A first QND
measurement measures the F̂z angular momentum component
of the input atomic state, and the second and third QND
measurements in 1=3 and 2=3 of Larmor precession cycles
measure F̂y and F̂x, respectively. (c) F̂ precesses about a
magnetic field (B) along the direction [111], making all compo-
nents accessible to measurement via stroboscopic probing.
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Large array of cold atoms

FIG. 4. (a) Atoms stored and transported in a 30 µm-pitch register. (b,c) A piezo actuator is

used to shift the microlens arrays’ position with the atoms being transported along. (d) Position

of maximum vertical displacement of 30.6 µm. Images are averaged 10 times.

IV. ATOM TRANSPORT USING A PIEZO ACTUATOR

Transport mechanisms relying on the skewed irradiation of optical elements introduce
optical aberrations of the resulting potentials. This puts limits on the achievable distance
with respect to the initial position in a single operation, an obstacle that we have been able
to overcome with the repeated handover of qubits between neighbouring trapping sites in a
shift register operation as demonstrated in [14].
In contrast, the approach of piezo-actuator based atom positioning and transport is com-
pletely free of additional optical aberrations. Here, the incident angle of the trapping laser
is kept constant since the microlens array itself is mounted to a piezo-controlled positioning
system and moved to the desired position (see piezo actuator mounted to array A2 in Fig.
2(a)). This causes the focal spots to shift accordingly and the trapped atoms to be trans-
ported along. The experimental implementation of this method for an array with 30 µm
pitch is shown in Fig. 4. Atoms are loaded into the dipole trap array and subsequently trans-
ported over variable distances. Images of the atom ensembles stored in the dipole trap array
are taken for zero piezo voltage (Fig. 4(a)), for two intermediate voltages (Fig. 4(b,c)) and
for the maximum applied voltage inducing a shift of 30.6 µm (Fig. 4(d)). Technical limita-
tions for the speed of the atom transport arise from mechanical resonances with frequencies
on the order of 40 kHz. This suggests that this technique can be extended to transport
speeds with resulting timescales well below 1 ms for connecting neighbouring trapping sites,
reaching the boundaries implied by the need for adiabaticity (see Sec. V). In addition, piezo
controlled positioning systems with travel ranges of several hundred microns are available.
Upgrading our setup with a 2D device of 300 µm range in future implementations will grant
the ability to shuffle quantum information between 10 × 10 register sites in a single-step
operation.

V. ADIABATICITY OF QUBIT TRANSPORT

The ability to transport quantum information in an unperturbed fashion is an essential
ingredient in large scale quantum processing architectures. It allows not only the develop-
ment of concepts with spatially separated functional subsections [15, 34], e.g. for quantum
state preparation, storage, and processing, but also to apply complex algorithms involving

7

New J. Phys. 14, 123034 (2014)

Blueprint of a microwave ion
trap quantum computer8

FIG. 7. Schematic of octagonal UHV chambers connected
together, each chamber is 4.5x4.5 m2 large and can hold >
2.2 million individual X-junctions placed on steel frames.

In the original proposals, logical qubits were encoded in
a smaller number of physical qubits using special code
word states that allow identification and fixing of errors
(occurring on single physical qubits) without destroying
the logical qubit states. These codes require the error
probabilities associated with each operation on the phys-
ical qubits to be limited to a very challenging level (of
order 10−5) for the error code to work.

Since then, schemes have been developed that can tol-
erate much larger error probabilities, but rely on the cod-
ing of logical qubits in a larger number of physical qubits.
One such scheme is the surface error correction code de-
scribed by Fowler et al. [54], which tolerates error prob-
abilities of each operation up to 10−2 and relies only on
nearest neighbour interactions. We will briefly summa-
rize how the surface code protects from errors, discuss
how it can be implemented with our two-dimensional ar-
ray architecture and how it can be used to perform fault-
tolerant logic operations.

The surface code requires physical qubits to be placed
in a regular lattice, that we can decompose into one sub-
lattice holding so called data qubits and another sub-
lattice holding measure-X and measure-Z qubits. In our
architecture, two ions are trapped in each X-junction sec-
tion, as shown in Fig. 8. One ion is permanently placed
in the entanglement zone constituting the data qubit,
the second ion is alternatively a measure-X or measure-Z
qubit, placed in the detection zone and can be shuttled
to the four adjacent data qubits.

Measure-X and measure-Z qubits constantly monitor
the states of their four nearest neighbour data qubits.
The measure-Z qubits perform four successive CNOT
gates with the data qubits in their respective entan-
glement zones, in the order displayed in Fig. 8, after
which the state of the measure-Z qubit is detected. The
measure-X qubits perform almost the same sequence, but
an additional Hadamard gate is applied to them before
and after the four CNOT gates. The measure qubit se-
quence is run simultaneously in a synchronized manner
with all measure qubits of the entire architecture and

FIG. 8. Small section of the scalable architecture illustrating
how data and measurement qubits interact with each other
in the entanglement zones to execute the surface code. Data
qubits are static and measurement qubits are shuttled to all
adjacent entanglement zones.

repeats itself over and over again throughout the calcu-
lation.

Associated with each four CNOT gate sequence are
the products of four σx or σz Pauli operators for the
measure-X or measure-Z qubits respectively. The eigen-
states of the products are dependent on the four neigh-
bouring data qubits and all products commute with one
another. For a single arbitrarily sized two-dimensional
array of qubits, only two states exist which are joint
eigenstates with eigenvalue +1 of all these operators.
These two eigenstates are the surface code states of the
two-dimensional array and constitute the logical qubit
states |0〉L and |1〉L.

If a single data qubit of the array undergoes an error,
either the projection performed by the measure qubits
corrects it or the error is detected by measuring the states
of the four neighbouring measure qubits. The error could
then be corrected, but an easier and more robust way is
to merely store the error information. The correction
can then be performed ‘in software’, i.e., by translating
the measurement results at the end of execution into the
appropriately modified values.

Should ions be lost from the qubit space due to enter-
ing a dark state, optical pumping is used to drive them
back to the qubit space and the net effect is then equiv-
alent to a qubit error of the form detected and corrected
by the code. Complete loss of a measure qubit due to
collisions with background gas is detected due to the pe-
riodic state detection of these after each measurement
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Sinusoidal observable

I Observable
~J =

∑
j

sin
(

2π
xj

λ

)
~σj

I Position dependent rotation of spin

λ

d

strength of driving field



Spatial distribution matters

〈△J〉2 entanglement configuration

observable configuration

d/λ d

width

w = 16

w = 2

w = 1

|ψ−〉 = (|01〉 − |10〉)/
√

2

S.Wölk and O.Gühne, arXiv: 1507.07226



Detecting long range entanglement

I Find the mimimum of(
4~J
)2

= (4Jx )2 + (4Jy )2 + (4Jz)2

for given entanglement distribution
I Minimum is achieved by pure states
I The variance splits into(

4~J
)2

=
∑
{j,k}

(
4~J
)2

j,k

with {j , k} denoting pairs of entangled states



Optimization

~J = ~σj + ε~σk

(△ ~J)2j,k

ε

min
|ψ〉

(∆~J)2 = 3(1− ε)2 0.27 ≤ ε ≤ 1

|ψopti〉 = |ψ−〉



Results

〈�J〉2

d/λ

–|Ψ−〉, w = 16, –(1,2), (3,4), . . . w = 2
•lower limit w = 2, •lower limit w = 4



Quantum metrology

How to increase N?

ℓ = ℓ(N)

d = const.

ℓ = const.

d = d(N)

. . .

. . .



Quantum Fisher information

I Evolution in time: Û(t) = exp

[
i t

T
∑

j
(2j − 1)d

λ ŷj

]

λ

d

strength of driving field

I Quantum Fisher Information

state d =const. d = `/N
|Ψ−〉, w = 2 4(t/T )2N2 4(t/T )2

|Ψ−〉, w = N (t/T )2N4 (t/T )2N2⊗ |0〉, w = 1 4(t/T )2N4 4(t/T )2N2



Classical Fisher Information

I Observable:
(
4~J
)2

(d/λ)

I Starting point: `
λ = 3
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Conclusion

Summary:
I The spatial distribution of entanglement matters!
I It can be characterized with the help of global observables,

e.g. sinusoidal observables.
I It influences the precision achievable for measuring spatial

dependent fields.
S.Wölk and O.Gühne, arXiv: 1507.07226

Outlook:
I How to characterize the width of entanglement for

multipartite entanglement?
I What is the best state to distinguish different spatial

variances of the field?
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